Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Mol Model ; 24(9): 237, 2018 Aug 17.
Article in English | MEDLINE | ID: mdl-30120591

ABSTRACT

This study is concerned with identifying features of 4-aminoquinoline scaffolds that can help pinpoint characteristics that enhance activity against chloroquine-resistant parasites. Statistically valid predictive models are reported for a series of 4-aminoquinoline analogues that are active against chloroquine-sensitive (NF54) and chloroquine-resistant (K1) strains of Plasmodium falciparum. Quantitative structure activity relationship techniques, based on statistical and machine learning methods such as multiple linear regression and partial least squares, were used with a novel pruning method for the selection of descriptors to develop robust models for both strains. Inspection of the dominant descriptors supports the hypothesis that chemical features that enable accumulation in the food vacuole of the parasite are key determinants of activity against both strains. The hydrophilic properties of the compounds were found to be crucial in predicting activity against the chloroquine-sensitive NF54 parasite strain, but not in the case of the chloroquine-resistant K1 strain, in line with previous studies. Additionally, the models suggest that 'softer' compounds tend to have improved activity for both strains than do 'harder' ones. The internally and externally validated models reported here should also prove useful in the future screening of potential antimalarial compounds for targeting chloroquine-resistant strains. Graphical Abstract Predictive models reveal linear relationships for activity of 4-aminoquinoline analogues active against chloroquine-sensitive strains of Plasmodium falciparum.


Subject(s)
Aminoquinolines/chemistry , Antimalarials/chemistry , Chloroquine/chemistry , Drug Resistance , Models, Molecular , Plasmodium falciparum , Aminoquinolines/pharmacology , Antimalarials/pharmacology , Chloroquine/pharmacology , Machine Learning
2.
Sci Rep ; 6: 36777, 2016 11 18.
Article in English | MEDLINE | ID: mdl-27857147

ABSTRACT

The methylerythritol phosphate (MEP) pathway is an essential metabolic pathway found in malaria parasites, but absent in mammals, making it a highly attractive target for the discovery of novel and selective antimalarial therapies. Using high-throughput screening, we have identified 2-phenyl benzo[d]isothiazol-3(2H)-ones as species-selective inhibitors of Plasmodium spp. 2-C-methyl-D-erythritol-4-phosphate cytidyltransferase (IspD), the third catalytic enzyme of the MEP pathway. 2-Phenyl benzo[d]isothiazol-3(2H)-ones display nanomolar inhibitory activity against P. falciparum and P. vivax IspD and prevent the growth of P. falciparum in culture, with EC50 values below 400 nM. In silico modeling, along with enzymatic, genetic and crystallographic studies, have established a mechanism-of-action involving initial non-covalent recognition of inhibitors at the IspD binding site, followed by disulfide bond formation through attack of an active site cysteine residue on the benzo[d]isothiazol-3(2H)-one core. The species-selective inhibitory activity of these small molecules against Plasmodium spp. IspD and cultured parasites suggests they have potential as lead compounds in the pursuit of novel drugs to treat malaria.


Subject(s)
Antimalarials/pharmacology , Benzothiazoles/pharmacology , Choline-Phosphate Cytidylyltransferase/chemistry , Malaria, Falciparum/prevention & control , Plasmodium falciparum/drug effects , Plasmodium vivax/drug effects , Binding Sites , Catalytic Domain , Cloning, Molecular , Crystallography, X-Ray , Erythritol/analogs & derivatives , Erythritol/chemistry , Inhibitory Concentration 50 , Recombinant Proteins/chemistry , Sugar Phosphates/chemistry
3.
AIDS ; 29(18): 2385-95, 2015 Nov 28.
Article in English | MEDLINE | ID: mdl-26372480

ABSTRACT

OBJECTIVE: Exposure to abacavir is associated with T-cell-mediated hypersensitivity reactions in individuals carrying human leukocyte antigen (HLA)-B57 : 01. To activate T cells, abacavir interacts directly with endogenous HLA-B57 : 01 and HLA-B57 : 01 expressed on the surface of antigen presenting cells. We have investigated whether chemical modification of abacavir can produce a molecule with antiviral activity that does not bind to HLA-B57 : 01 and activate T cells. DESIGN: An interdisciplinary laboratory study using samples from human donors expressing HLA-B57 : 01. Researchers were blinded to the analogue structures and modelling data. METHODS: Sixteen 6-amino substituted abacavir analogues were synthesized. Computational docking studies were completed to predict capacity for analogue binding within HLA-B57 : 01. Abacavir-responsive CD8 clones were generated to study the association between HLA-B57 : 01 analogue binding and T-cell activation. Antiviral activity and the direct inhibitory effect of analogues on proliferation were assessed. RESULTS: Major histocompatibility complex class I-restricted CD8 clones proliferated and secreted IFNγ following abacavir binding to surface and endogenous HLA-B57 : 01. Several analogues retained antiviral activity and showed no overt inhibitory effect on proliferation, but displayed highly divergent antigen-driven T-cell responses. For example, abacavir and N-propyl abacavir were equally potent at activating clones, whereas the closely related analogues N-isopropyl and N-methyl isopropyl abacavir were devoid of T-cell activity. Docking abacavir analogues to HLA-B57 : 01 revealed a quantitative relationship between drug-protein binding and the T-cell response. CONCLUSION: These studies demonstrate that the unwanted T-cell activity of abacavir can be eliminated whilst maintaining the favourable antiviral profile. The in-silico model provides a tool to aid the design of safer antiviral agents that may not require a personalized medicines approach to therapy.


Subject(s)
Anti-HIV Agents/adverse effects , CD8-Positive T-Lymphocytes/immunology , Dideoxynucleosides/adverse effects , Drug Hypersensitivity/prevention & control , HIV Infections/drug therapy , HLA-B Antigens/metabolism , Anti-HIV Agents/chemistry , Anti-HIV Agents/metabolism , Anti-HIV Agents/pharmacology , Dideoxynucleosides/chemistry , Dideoxynucleosides/metabolism , Dideoxynucleosides/pharmacology , Humans , Microbial Sensitivity Tests , Molecular Docking Simulation , Protein Binding
4.
Proc Natl Acad Sci U S A ; 112(3): 755-60, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25564664

ABSTRACT

Cytochrome bc1 is a proven drug target in the prevention and treatment of malaria. The rise in drug-resistant strains of Plasmodium falciparum, the organism responsible for malaria, has generated a global effort in designing new classes of drugs. Much of the design/redesign work on overcoming this resistance has been focused on compounds that are presumed to bind the Q(o) site (one of two potential binding sites within cytochrome bc1 using the known crystal structure of this large membrane-bound macromolecular complex via in silico modeling. Cocrystallization of the cytochrome bc1 complex with the 4(1H)-pyridone class of inhibitors, GSK932121 and GW844520, that have been shown to be potent antimalarial agents in vivo, revealed that these inhibitors do not bind at the Q(o) site but bind at the Q(i )site. The discovery that these compounds bind at the Q(i) site may provide a molecular explanation for the cardiotoxicity and eventual failure of GSK932121 in phase-1 clinical trial and highlight the need for direct experimental observation of a compound bound to a target site before chemical optimization and development for clinical trials. The binding of the 4(1H)-pyridone class of inhibitors to Q(i) also explains the ability of this class to overcome parasite Q(o)-based atovaquone resistance and provides critical structural information for future design of new selective compounds with improved safety profiles.


Subject(s)
Antimalarials/metabolism , Electron Transport Complex III/metabolism , Pyridones/metabolism , Binding Sites , Electron Transport Complex III/chemistry , Molecular Docking Simulation
5.
Chem Res Toxicol ; 27(4): 524-35, 2014 Apr 21.
Article in English | MEDLINE | ID: mdl-24571427

ABSTRACT

Abacavir (ABC), a nucleoside-analogue reverse transcriptase inhibitor, is associated with severe hypersensitivity reactions that are thought to involve the activation of CD8+ T cells in a HLA-B*57:01-restricted manner. Recent studies have claimed that noncovalent interactions of ABC with HLA-B*57:01 are responsible for the immunological reactions associated with ABC. However, the formation of hemoglobin-ABC aldehyde (ABCA) adducts in patients exposed to ABC suggests that protein conjugation might represent a pathway for antigen formation. To further characterize protein conjugation reactions, we used mass spectrometric methods to define ABCA modifications in patients receiving ABC therapy. ABCA formed a novel intramolecular cross-linking adduct on human serum albumin (HSA) in patients and in vitro via Michael addition, followed by nucleophilic adduction of the aldehyde with a neighboring protein nucleophile. Adducts were detected on Lys159, Lys190, His146, and Cys34 residues in the subdomain IB of HSA. Only a cysteine adduct and a putative cross-linking adduct were detected on glutathione S-transferase Pi (GSTP). These findings reveal that ABC forms novel types of antigens in all patients taking the drug. It is therefore vital that the immunological consequences of such pathways of haptenation are explored in the in vitro models that have been used by various groups to define new mechanisms of drug hypersensitivity exemplified by ABC.


Subject(s)
Blood Proteins/metabolism , Dideoxynucleosides/metabolism , HIV Infections/drug therapy , Reverse Transcriptase Inhibitors/metabolism , Amino Acid Sequence , Blood Proteins/chemistry , Dideoxynucleosides/therapeutic use , HIV Infections/blood , Humans , Molecular Sequence Data , Reverse Transcriptase Inhibitors/therapeutic use , Tandem Mass Spectrometry
6.
Proc Natl Acad Sci U S A ; 109(21): 8298-303, 2012 May 22.
Article in English | MEDLINE | ID: mdl-22566611

ABSTRACT

There is an urgent need for new antimalarial drugs with novel mechanisms of action to deliver effective control and eradication programs. Parasite resistance to all existing antimalarial classes, including the artemisinins, has been reported during their clinical use. A failure to generate new antimalarials with novel mechanisms of action that circumvent the current resistance challenges will contribute to a resurgence in the disease which would represent a global health emergency. Here we present a unique generation of quinolone lead antimalarials with a dual mechanism of action against two respiratory enzymes, NADH:ubiquinone oxidoreductase (Plasmodium falciparum NDH2) and cytochrome bc(1). Inhibitor specificity for the two enzymes can be controlled subtly by manipulation of the privileged quinolone core at the 2 or 3 position. Inhibitors display potent (nanomolar) activity against both parasite enzymes and against multidrug-resistant P. falciparum parasites as evidenced by rapid and selective depolarization of the parasite mitochondrial membrane potential, leading to a disruption of pyrimidine metabolism and parasite death. Several analogs also display activity against liver-stage parasites (Plasmodium cynomolgi) as well as transmission-blocking properties. Lead optimized molecules also display potent oral antimalarial activity in the Plasmodium berghei mouse malaria model associated with favorable pharmacokinetic features that are aligned with a single-dose treatment. The ease and low cost of synthesis of these inhibitors fulfill the target product profile for the generation of a potent, safe, and inexpensive drug with the potential for eventual clinical deployment in the control and eradication of falciparum malaria.


Subject(s)
Antimalarials/pharmacology , Malaria, Falciparum/drug therapy , Malaria, Falciparum/prevention & control , Plasmodium falciparum/drug effects , Pyridines/pharmacology , Quinolones/pharmacology , Animals , Antimalarials/chemistry , Cells, Cultured , Electron Transport/drug effects , Electron Transport Complex I/antagonists & inhibitors , Electron Transport Complex III/antagonists & inhibitors , Hepatocytes/cytology , Hepatocytes/parasitology , Macaca mulatta , Malaria, Falciparum/parasitology , Male , Mice , Mice, Inbred Strains , Mitochondria/drug effects , Plasmodium berghei/drug effects , Plasmodium berghei/growth & development , Plasmodium cynomolgi/drug effects , Plasmodium cynomolgi/growth & development , Plasmodium falciparum/growth & development , Pyridines/chemistry , Quinolones/chemistry
7.
Antimicrob Agents Chemother ; 56(7): 3739-47, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22547613

ABSTRACT

The mitochondrial bc(1) complex is a multisubunit enzyme that catalyzes the transfer of electrons from ubiquinol to cytochrome c coupled to the vectorial translocation of protons across the inner mitochondrial membrane. The complex contains two distinct quinone-binding sites, the quinol oxidation site of the bc(1) complex (Q(o)) and the quinone reduction site (Q(i)), located on opposite sides of the membrane within cytochrome b. Inhibitors of the Q(o) site such as atovaquone, active against the bc(1) complex of Plasmodium falciparum, have been developed and formulated as antimalarial drugs. Unfortunately, single point mutations in the Q(o) site can rapidly render atovaquone ineffective. The development of drugs that could circumvent cross-resistance with atovaquone is needed. Here, we report on the mode of action of a potent inhibitor of P. falciparum proliferation, 1-hydroxy-2-dodecyl-4(1H)quinolone (HDQ). We show that the parasite bc(1) complex--from both control and atovaquone-resistant strains--is inhibited by submicromolar concentrations of HDQ, indicating that the two drugs have different targets within the complex. The binding site of HDQ was then determined by using a yeast model. Introduction of point mutations into the Q(i) site, namely, G33A, H204Y, M221Q, and K228M, markedly decreased HDQ inhibition. In contrast, known inhibitor resistance mutations at the Q(o) site did not cause HDQ resistance. This study, using HDQ as a proof-of-principle inhibitor, indicates that the Q(i) site of the bc(1) complex is a viable target for antimalarial drug development.


Subject(s)
Antimalarials/pharmacology , Electron Transport Complex III/metabolism , Plasmodium falciparum/drug effects , Plasmodium falciparum/metabolism , Quinolones/pharmacology , Antimalarials/chemical synthesis , Antimalarials/chemistry , Binding Sites/drug effects , Quinolones/chemical synthesis , Quinolones/chemistry
8.
J Med Chem ; 55(7): 3144-54, 2012 Apr 12.
Article in English | MEDLINE | ID: mdl-22380711

ABSTRACT

Malaria is responsible for approximately 1 million deaths annually; thus, continued efforts to discover new antimalarials are required. A HTS screen was established to identify novel inhibitors of the parasite's mitochondrial enzyme NADH:quinone oxidoreductase (PfNDH2). On the basis of only one known inhibitor of this enzyme, the challenge was to discover novel inhibitors of PfNDH2 with diverse chemical scaffolds. To this end, using a range of ligand-based chemoinformatics methods, ~17000 compounds were selected from a commercial library of ~750000 compounds. Forty-eight compounds were identified with PfNDH2 enzyme inhibition IC(50) values ranging from 100 nM to 40 µM and also displayed exciting whole cell antimalarial activity. These novel inhibitors were identified through sampling 16% of the available chemical space, while only screening 2% of the library. This study confirms the added value of using multiple ligand-based chemoinformatic approaches and has successfully identified novel distinct chemotypes primed for development as new agents against malaria.


Subject(s)
Antimalarials/chemistry , Databases, Factual , Plasmodium falciparum/enzymology , Protozoan Proteins/antagonists & inhibitors , Quantitative Structure-Activity Relationship , Quinone Reductases/antagonists & inhibitors , Antimalarials/pharmacology , Bayes Theorem , High-Throughput Screening Assays , Informatics , Parasitic Sensitivity Tests , Plasmodium falciparum/drug effects , Principal Component Analysis , Protozoan Proteins/chemistry , Quinone Reductases/chemistry
9.
J Biol Chem ; 287(13): 9731-9741, 2012 Mar 23.
Article in English | MEDLINE | ID: mdl-22282497

ABSTRACT

Atovaquone is an anti-malarial drug used in combination with proguanil (e.g. Malarone(TM)) for the curative and prophylactic treatment of malaria. Atovaquone, a 2-hydroxynaphthoquinone, is a competitive inhibitor of the quinol oxidation (Q(o)) site of the mitochondrial cytochrome bc(1) complex. Inhibition of this enzyme results in the collapse of the mitochondrial membrane potential, disruption of pyrimidine biosynthesis, and subsequent parasite death. Resistance to atovaquone in the field is associated with point mutations in the Q(o) pocket of cytochrome b, most notably near the conserved Pro(260)-Glu(261)-Trp(262)-Tyr(263) (PEWY) region in the ef loop). The effect of this mutation has been extensively studied in model organisms but hitherto not in the parasite itself. Here, we have performed a molecular and biochemical characterization of an atovaquone-resistant field isolate, TM902CB. Molecular analysis of this strain reveals the presence of the Y268S mutation in cytochrome b. The Y268S mutation is shown to confer a 270-fold shift of the inhibitory constant (K(i)) for atovaquone with a concomitant reduction in the V(max) of the bc(1) complex of ∼40% and a 3-fold increase in the observed K(m) for decylubiquinol. Western blotting analyses reveal a reduced iron-sulfur protein content in Y268S bc(1) suggestive of a weakened interaction between this subunit and cytochrome b. Gene expression analysis of the TM902CB strain reveals higher levels of expression, compared with the 3D7 (atovaquone-sensitive) control strain in bc(1) and cytochrome c oxidase genes. It is hypothesized that the observed differential expression of these and other key genes offsets the fitness cost resulting from reduced bc(1) activity.


Subject(s)
Antimalarials/pharmacology , Atovaquone/pharmacology , Cytochromes b/biosynthesis , Drug Resistance , Gene Expression Regulation, Enzymologic , Mutation, Missense , Plasmodium falciparum/enzymology , Protozoan Proteins/biosynthesis , Amino Acid Substitution , Cytochromes b/genetics , Electron Transport Complex III/genetics , Electron Transport Complex III/metabolism , Humans , Membrane Potential, Mitochondrial/drug effects , Plasmodium falciparum/genetics , Proguanil/pharmacology , Protozoan Proteins/genetics
10.
J Med Chem ; 54(24): 8670-80, 2011 Dec 22.
Article in English | MEDLINE | ID: mdl-22059983

ABSTRACT

We report the activities of a number of thiazolides [2-hydroxyaroyl-N-(thiazol-2-yl)amides] against hepatitis C virus (HCV) genotypes IA and IB, using replicon assays. The structure-activity relationships (SARs) of thiazolides against HCV are less predictable than against hepatitis B virus (HBV), though an electron-withdrawing group at C(5') generally correlates with potency. Among the related salicyloylanilides, the m-fluorophenyl analogue was most promising; niclosamide and close analogues suffered from very low solubility and bioavailability. Nitazoxanide (NTZ) 1 has performed well in clinical trials against HCV. We show here that the 5'-Cl analogue 4 has closely comparable in vitro activity and a good cell safety index. By use of support vector analysis, a quantitative structure-activity relationship (QSAR) model was obtained, showing good predictive models for cell safety. We conclude by updating the mode of action of the thiazolides and explain the candidate selection that has led to compound 4 entering preclinical development.


Subject(s)
Amides/chemical synthesis , Antiviral Agents/chemical synthesis , Hepacivirus/drug effects , Thiazoles/chemical synthesis , Amides/chemistry , Amides/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Cell Line , Hepacivirus/genetics , Hepacivirus/physiology , Humans , Quantitative Structure-Activity Relationship , Thiazoles/chemistry , Thiazoles/pharmacology , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...