Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Toxicol Environ Health A ; 58(6): 343-63, 1999 Nov 26.
Article in English | MEDLINE | ID: mdl-10580758

ABSTRACT

It was shown previously that fumes generated from stainless steel (SS) welding induced more pneumotoxicity and were cleared from the lungs at a slower rate than fumes collected from mild steel (MS) welding. These differences in response may be attributed to the metal composition of SS and MS welding fumes. In this study, fumes with vastly different metal profiles were collected during gas metal arc (GMA) or flux-covered manual metal arc (MMA) welding using two different consumable electrodes, SS or MS. The collected samples were suspended in saline, incubated for 24 h at 37 degrees C, and centrifuged. The supernatant (soluble components) and pellets (insoluble particulates) were separated, and their effects on lung macrophage viability and the release of reactive oxygen species (ROS) by macrophages were examined in vitro. The soluble MMA-SS sample was shown to be the most cytotoxic to macrophages and to have the greatest effect on their function as compared to the GMA-SS and GMA-MS fumes. Neither the soluble nor insoluble forms of the GMA-MS sample had any marked effect on macrophage viability. The flux-covered MMA-SS fume was found to be much more water soluble as compared to either the GMA-SS or the GMA-MS fumes. The soluble fraction of the MMA-SS samples was comprised almost entirely of Cr. The small fraction of the GMA-MS sample that was soluble contained Mn with little Fe, while a more complex mixture was observed in the soluble portion of the GMA-SS sample, which contained Mn, Ni, Fe, Cr, and Cu. Data show that differences in the solubility of welding fumes influence the viability and ROS production of macrophages. The presence of soluble metals, such as Fe, Cr, Ni, Cu, and Mn, and the complexes formed by these different metals are likely important in the pulmonary responses observed after welding fume exposure.


Subject(s)
Air Pollutants, Occupational/toxicity , Macrophages, Alveolar/drug effects , Metals/toxicity , Steel/toxicity , Welding , Air Pollutants, Occupational/chemistry , Air Pollutants, Occupational/metabolism , Animals , Cell Survival/drug effects , Cells, Cultured , Chelating Agents/pharmacology , Deferoxamine/pharmacology , Macrophages, Alveolar/cytology , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/physiology , Male , Metals/chemistry , Metals/metabolism , Particle Size , Rats , Reactive Oxygen Species/metabolism , Smoke/adverse effects , Solubility , Stainless Steel/chemistry , Stainless Steel/toxicity , Steel/chemistry
2.
Environ Health Perspect ; 105(8): 850-5, 1997 Aug.
Article in English | MEDLINE | ID: mdl-9347900

ABSTRACT

Although most people are thought to receive their highest acute exposures to gasoline while refueling, relatively little is actually known about personal, nonoccupational exposures to gasoline during refueling activities. This study was designed to measure exposures associated with the use of an oxygenated fuel under cold conditions in Fairbanks, Alaska. We compared concentrations of gasoline components in the blood and in the personal breathing zone (PBZ) of people who pumped regular unleaded gasoline (referred to as regular gasoline) with concentrations in the blood of those who pumped an oxygenated fuel that was 10% ethanol (E-10). A subset of participants in a wintertime engine performance study provided blood samples before and after pumping gasoline (30 using regular gasoline and 30 using E-10). The biological and environmental samples were analyzed for selected aromatic volatile organic compounds (VOCs) found in gasoline (benzene, ethylbenzene, toluene, m-/p-xylene, and o-xylene); the biological samples were also analyzed for three chemicals not found in gasoline (1,4-dichlorobenzene, chloroform, and styrene). People in our study had significantly higher levels of gasoline components in their blood after pumping gasoline than they had before pumping gasoline. The changes in VOC levels in blood were similar whether the individuals pumped regular gasoline or the E-10 blend. The analysis of PBZ samples indicated that there were also measurable levels of gasoline components in the air during refueling. The VOC levels in PBZ air were similar for the two groups. In this study, we demonstrate that people are briefly exposed to low (ppm and sub-ppm) levels of known carcinogens and other potentially toxic compounds while pumping gasoline, regardless of the type of gasoline used.


Subject(s)
Air Pollutants/analysis , Environmental Exposure/analysis , Ethanol , Gasoline/analysis , Adult , Alaska , Automobiles , Benzene/analysis , Benzene Derivatives/analysis , Benzene Derivatives/blood , Blood Chemical Analysis , Cold Temperature , Female , Humans , Inhalation Exposure , Male , Middle Aged , Toluene/analysis , Toluene/blood , Volatilization , Xylenes/analysis , Xylenes/blood , Xylenes/metabolism
3.
J Expo Anal Environ Epidemiol ; 5(4): 511-31, 1995.
Article in English | MEDLINE | ID: mdl-8938247

ABSTRACT

In-vehicle exposures to selected gasoline-derived volatile organic compounds (VOCs) and formaldehyde were examined on 113 commutes through suburban New Jersey and on 33 New Jersey/New York commutes using measurements taken in two vehicles driven in tandem during 1991-1992. Overall median exposures to VOCs were lowest on the suburban commute, slightly higher on the New Jersey Turnpike, and highest in transit through the Lincoln Tunnel. Median in-vehicle concentrations of benzene, ethylbenzene, m- and p-xylene, and o-xylene were 14 microg/m3, 6.8 microg/m3, 36 microg/m3, and 15 microg/m3, respectively. For a motorist who commutes 93.2 min daily (6.5% of the day), this corresponds to 12.1%, 10.8%, 14.9%, and 14.7% of the total daily exposures to these compounds. One vehicle, with a carbureted engine, developed malfunctions which caused gasoline emissions within the engine compartment during driving. Resultant gasoline-derived VOC concentrations in this vehicle measured much higher than in the properly maintained, fuel-injected vehicle, particularly for the low ventilation extreme. The highest in-vehicle benzene concentration measured during these malfunctions was 45.2 microg/m3. The air concentration in the vehicle driven in tandem was a factor of 25 less (1.8 microg/m3). A motorist who drives for the average daily period of 93.2 min/day in this malfunctioning automobile will have a benzene exposure of 2.8 (microg/m3)day, compared to 0.1 (microg/m3)day in the properly functioning vehicle.


Subject(s)
Air Pollution, Indoor/analysis , Automobile Driving , Environmental Exposure/statistics & numerical data , Formaldehyde/analysis , Hydrocarbons/analysis , Vehicle Emissions/analysis , Adult , Automobiles , Environmental Monitoring/methods , Equipment Failure , Female , Humans , Male , Middle Aged , New Jersey , New York City , Risk Factors , Ventilation
4.
J Expo Anal Environ Epidemiol ; 2(1): 79-96, 1992.
Article in English | MEDLINE | ID: mdl-1380369

ABSTRACT

Gasoline is emitted from automobiles as uncombusted fuel and via evaporation. Volatile organic compounds (VOC) from gasoline are at higher levels in roadway air than in the surrounding ambient atmosphere and penetrate into automobile cabins, thereby exposing commuters to higher levels than they would experience in other microenvironments. Measurements of VOC concentrations and carbon monoxide were made within automobiles during idling, while driving on a suburban route in New Jersey, and on a commute to New York City. Concentrations of VOC from gasoline were determined to be elevated above the ambient background levels in all microenvironments while VOC without a gasoline source were not. The variability of VOC concentrations with location within the automobile was determined to be smaller than inter-day variability during idling studies. VOC and carbon monoxide levels within the automobile cabin differed among the different routes examined. The levels were related to traffic density and were inversely related to driving speed and wind speed. Overall, daily VOC exposure for gasoline-derived compounds during winter commuting in New Jersey was estimated to range between 5 and 20% and constituted between 15 and 40% of an individual's daily exposure based on comparison to urban and suburban settings, respectively. VOC exposure during commuting in Southern California was estimated to range between 15 and 60%.


Subject(s)
Automobiles , Environmental Exposure/adverse effects , Gasoline/adverse effects , Vehicle Emissions/adverse effects , Air/analysis , Carbon Monoxide/adverse effects , Environmental Monitoring/methods , Humans , New Jersey , New York City , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...