Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ecology ; 102(2): e03263, 2021 02.
Article in English | MEDLINE | ID: mdl-33314072

ABSTRACT

Nitrogen and phosphorus are thought to be the most important limiting nutrients in most terrestrial ecosystems, but little is known about how other elements may limit the abundance of arthropods. We utilized a fully factorial fertilization experiment that manipulated macronutrients (N and P, together) and micronutrients (calcium, sodium, potassium, separately), in large 30 × 30 m plots and sampled litter arthropods via pitfall trapping to determine the nutrients that limit this group. An invasive ant, Nylanderia fulva, numerically dominated the community and increased in abundance 13% in plots fertilized by Ca. Detritivores were not limited by any nutrient combination, but macronutrients increased predator abundance 43%. We also found that some combinations of macronutrients and micronutrients had toxic or stressful effects on the arthropod community: detritivores decreased in abundance 23% with the combination of macronutrients, Ca, and K, and 22% with macronutrients and K; and N. fulva decreased in abundance 24% in plots fertilized by K and 45% in plots fertilized by the combination of Na and K. Our work supports growing evidence that micronutrients, especially Ca and K, may be important in structuring grassland arthropod communities, and suggests that micronutrients may affect whether or not invasive ants reach numerical dominance.


Subject(s)
Ants , Arthropods , Animals , Calcium , Ecosystem , Food Chain , Grassland , Micronutrients , Nutrients
2.
J Anim Ecol ; 87(6): 1727-1737, 2018 11.
Article in English | MEDLINE | ID: mdl-30102785

ABSTRACT

Understanding how biodiversity affects ecosystem processes is a key question in ecology. Previous research has found that increasing plant diversity often enhances many ecosystem processes, but less is known about the role of consumer diversity to ecosystem processes, especially in terrestrial ecosystems. Furthermore, we do not know how general biodiversity responses are among ecosystem types. We examined the role of insect herbivore (Orthoptera) diversity on plant production using parallel field experiments in three grassland ecosystems (mixed grass prairie, tallgrass prairie and coastal tallgrass prairie) to determine whether the effects of grasshopper diversity were consistent among sites. Using mesocosms, we manipulated orthopteran species richness (0, 1, 2, 3 or 4 species), functional richness (number of functional feeding groups present; 0, 1 or 2 functional groups) and functional composition (composition of functional groups present; mixed-feeders only, grass-feeders only, both mixed-feeders and grass-feeders). Diversity treatments were maintained throughout the experiment by replacing dead individuals. Plant biomass was destructively sampled at the end of the experiment. We found no effect of species richness or functional richness on plant biomass. However, herbivore functional composition was important, and effects were qualitatively similar across sites: The presence of only grass-feeding species reduced plant biomass more than either mixed-feeding species alone or both groups together. Orthopterans had consistent effects across a range of abiotic conditions, as well as different plant community and orthopteran community compositions. Our results suggest that functional composition of insect herbivores affects plant communities in grasslands more than herbivore species richness or functional richness, and this pattern was robust among grassland types.


Subject(s)
Ecosystem , Grasshoppers , Animals , Biodiversity , Biomass , Grassland , Herbivory
3.
Ecol Lett ; 21(10): 1467-1476, 2018 10.
Article in English | MEDLINE | ID: mdl-30039540

ABSTRACT

The canonical factors typically thought to determine herbivore community structure often explain only a small fraction of the variation in herbivore abundance and diversity. We tested how macronutrients and relatively understudied micronutrients interacted to influence the structure of insect herbivore (orthopteran) communities. We conducted a factorial fertilisation experiment manipulating macronutrients (N and P, added together) and micronutrients (Ca, Na and K) in large plots (30 × 30 m2 ) in a Texas coastal prairie. Although no single or combination of micronutrients affected herbivore communities in the absence of additional macronutrients, macronutrients and sodium added together increased herbivore abundance by 60%, richness by 15% and diversity by 20%. These results represent the first large-scale manipulation of single micronutrients and macronutrients in concert, and revealed an herbivore community co-limited by macronutrients and Na. Our work supports an emerging paradigm that Na may be important in limiting herbivore communities.


Subject(s)
Herbivory , Insecta , Sodium , Animals , Ecosystem , Grassland , Nutrients , Texas
4.
Curr Opin Insect Sci ; 23: 28-34, 2017 10.
Article in English | MEDLINE | ID: mdl-29129279

ABSTRACT

Predator-prey interactions can be very important to community structure and function. A growing body of research demonstrates how climate change can modify these species interactions. Climate change can modify predator-prey interactions by affecting species characteristics, and by modifying consumptive and/or non-consumptive predator effects. Current work examines how climate change and predation risk can combine to influence herbivore stoichiometry and feeding ecology. Other recent advances show how climate change can affect chemical signaling of plants and insects, as well as how pollution and other components of the environmental context can modify predator-prey interactions.


Subject(s)
Climate Change , Insecta/physiology , Predatory Behavior , Animals , Ecosystem , Food Chain , Plants
5.
Environ Entomol ; 44(3): 519-28, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26313957

ABSTRACT

Species interactions are often context dependent, where outcomes vary in response to one or more environmental factors. It remains unclear how abiotic conditions like temperature combine with biotic factors such as consumer density or food quality to affect resource availability or influence species interactions. Using the large grasshopper Melanoplus bivittatus (Say) and a common wolf spider [Rabidosa rabida (Walkenaer)], we conducted manipulative field experiments in tallgrass prairie to examine how spider-grasshopper interactions respond to manipulations of temperature, grasshopper density, and food quality. Grasshopper survival was density dependent, as were the effects of spider presence and food quality in context-dependent ways. In high grasshopper density treatments, predation resulted in increased grasshopper survival, likely as a result of reduced intraspecific competition in the presence of spiders. Spiders had no effect on grasshopper survival when grasshoppers were stocked at low densities. Effects of the experimental treatments were often interdependent so that effects were only observed when examined together with other treatments. The occurrence of trophic cascades was context dependent, where the effects of food quality and spider presence varied with temperature under high-density treatments. Temperature weakly affected the impact of spider presence on M. bivittatus survivorship when all treatments were considered simultaneously, but different context-dependent responses to spider presence and food quality were observed among the three temperature treatments under high-density conditions. Our results indicate that context-dependent species interactions are common and highlight the importance of understanding how key biotic and abiotic factors combine to influence species interactions.


Subject(s)
Food Chain , Grasshoppers/physiology , Predatory Behavior , Spiders/physiology , Temperature , Animals , Ecosystem , Grassland , Nutritive Value , Population Density , Survival Analysis
6.
Annu Rev Entomol ; 58: 19-36, 2013.
Article in English | MEDLINE | ID: mdl-22830354

ABSTRACT

Arthropods are an important component of grassland systems, contributing significantly to biodiversity and ecosystem structure and function. Climate, fire, and grazing by large herbivores are important drivers in grasslands worldwide. Arthropod responses to these drivers are highly variable and clear patterns are difficult to find, but responses are largely indirect with respect to changes in resources, species interactions, habitat structure, and habitat heterogeneity resulting from interactions among fire, grazing, and climate. Here, we review these ecological mechanisms influencing grassland arthropod diversity. We summarize hypotheses describing species diversity at local and regional scales and then discuss specific factors that may affect arthropod diversity in grassland systems. These factors include direct and indirect effects of grazing, fire, and climate, species interactions, above- and belowground interactions, and landscape-level effects.


Subject(s)
Arthropods/physiology , Biodiversity , Ecosystem , Animals , Climate , Fires , Food Chain
7.
Environ Entomol ; 40(5): 979-88, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22251710

ABSTRACT

Grasshopper abundance and diversity vary with management practices such as fire and grazing. Understanding how grasshopper life history traits such as fecundity respond to management practices is key to predicting grasshopper population dynamics in heterogeneous environments. Landscape-level experimental fire and bison grazing treatments at the Konza Prairie Biological Station (Manhattan, KS) provide an opportunity to examine how management affects grasshopper fecundity. Here we report on grasshopper fecundity for nine common species at Konza Prairie. From 2007 to 2009, adult female grasshoppers were collected every 3 wk from eight watersheds that varied in fire and grazing treatments. Fecundity was measured by examining female reproductive tracts, which contain a record of past and current reproductive activity. Body size was a poor predictor of fecundity for all species. Despite large differences in vegetation structure and composition with management regime (grazing and fire interval), we observed little effect of management on grasshopper fecundity. Habitat characteristics (grasshopper density, vegetation biomass, and vegetation quality; measured in 2008 and 2009) were better predictors of past fecundity than current fecundity, with species-specific responses. Fecundity increased throughout the summer, indicating that grasshoppers were able to acquire sufficient nutritional resources for egg production in the early fall when vegetation quality is generally low. Because fecundity did not vary across management treatments, population stage structure may be more important for determining population level reproduction than management regime at Konza Prairie.


Subject(s)
Ecosystem , Fires , Grasshoppers/physiology , Oviparity , Poaceae , Animals , Bison , Body Size , Female , Fertility , Kansas , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...