Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Bioanal Chem ; 414(13): 3863-3873, 2022 May.
Article in English | MEDLINE | ID: mdl-35396608

ABSTRACT

Sarin is a highly toxic nerve agent classified by the Chemical Weapon Convention as a Schedule 1 chemical with no use other than to kill or injure. Moreover, in recent times, chemical warfare agents have been deployed against both military and civilian populations. Chemical warfare agents always contain minor impurities that can provide important chemical attribution signatures (CAS) that can aid in forensic investigations. In order to understand the trace molecular composition of sarin, various analytical approaches including GC-MS, LC-MS and NMR were used to determine the chemical markers of a set of sarin samples. Precursor materials were studied and the full characterisation of a synthetic process was undertaken in order to provide new insights into potential chemical attribution signatures for this agent. Several compounds that were identified in the precursor were also found in the sarin samples linking it to its method of preparation. The identification of these CAS contributes critical information about a synthetic route to sarin, and has potential for translation to related nerve agents.


Subject(s)
Chemical Warfare Agents , Nerve Agents , Chemical Warfare Agents/analysis , Chromatography, Liquid/methods , Gas Chromatography-Mass Spectrometry , Nerve Agents/analysis , Sarin/analysis , Tandem Mass Spectrometry
2.
J Org Chem ; 64(18): 6764-6770, 1999 Sep 03.
Article in English | MEDLINE | ID: mdl-11674684

ABSTRACT

Reaction of 1-(2-iodophenyl)-1-methyloxirane (12) with 2 equiv of sodium n-butyltellurolate (n-BuTeNa), generated by the sodium borohydride reduction of di-n-butyl ditelluride, in THF, affords 2,3-dihydro-3-hydroxy-3-methylbenzo[b]tellurophene (13) in 62% yield, together with a small quantity of 1-(n-butyltelluro)-2-phenyl-2-propanol (27). This transformation presumably involves a tandem S(RN)1/S(H)i sequence. Similar reactions of 1-(benzylseleno)-2-phenyl-2-propanol (5a, R = Me) and 1-allyloxy-2-iodobenzene (15) afforded 2,3-dihydro-3-hydroxy-3-methylbenzo[b]selenophene (17, 74%), and 3-(n-butyltelluro)methyl-2,3-dihydrobenzo[b]furan (18, 50%), respectively. Lithium alkyltellurolates, generated by direct tellurium insertion into the required alkyllithium, or sec-butyl or tert-butyl substitution on tellurium provide product distributions similar to those observed for reactions involving n-BuTeNa. Lithium or sodium phenyltellurolate returned only starting materials from these reaction mixtures. The 2-[2-(n-butyltelluro)-1-hydroxy-1-methyl]ethylphenyl radical (14) is estimated to cyclize with k(c) = 5 x 10(8) s(-)(1) at 25 degrees C. The tandem S(RN)1/S(H)i sequence has been applied to the preparation of the antioxidant analogues, 5-hydroxy-2,3-dihydrobenzo[b]tellurophene and selenophene (31, 32).

SELECTION OF CITATIONS
SEARCH DETAIL
...