Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Front Cell Infect Microbiol ; 14: 1340017, 2024.
Article in English | MEDLINE | ID: mdl-38465237

ABSTRACT

Animal models of infectious disease often serve a crucial purpose in obtaining licensure of therapeutics and medical countermeasures, particularly in situations where human trials are not feasible, i.e., for those diseases that occur infrequently in the human population. The common marmoset (Callithrix jacchus), a Neotropical new-world (platyrrhines) non-human primate, has gained increasing attention as an animal model for a number of diseases given its small size, availability and evolutionary proximity to humans. This review aims to (i) discuss the pros and cons of the common marmoset as an animal model by providing a brief snapshot of how marmosets are currently utilized in biomedical research, (ii) summarize and evaluate relevant aspects of the marmoset immune system to the study of infectious diseases, (iii) provide a historical backdrop, outlining the significance of infectious diseases and the importance of developing reliable animal models to test novel therapeutics, and (iv) provide a summary of infectious diseases for which a marmoset model exists, followed by an in-depth discussion of the marmoset models of two studied bacterial infectious diseases (tularemia and melioidosis) and one viral infectious disease (viral hepatitis C).


Subject(s)
Bacterial Infections , Communicable Diseases , Tularemia , Animals , Humans , Callithrix , Disease Models, Animal , Tularemia/microbiology
2.
NPJ Syst Biol Appl ; 10(1): 33, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553532

ABSTRACT

Protective antigen (PA) is a protein produced by Bacillus anthracis. It forms part of the anthrax toxin and is a key immunogen in US and UK anthrax vaccines. In this study, we have conducted experiments to quantify PA in the supernatants of cultures of B. anthracis Sterne strain, which is the strain used in the manufacture of the UK anthrax vaccine. Then, for the first time, we quantify PA production and degradation via mathematical modelling and Bayesian statistical techniques, making use of this new experimental data as well as two other independent published data sets. We propose a single mathematical model, in terms of delay differential equations (DDEs), which can explain the in vitro dynamics of all three data sets. Since we did not heat activate the B. anthracis spores prior to inoculation, germination occurred much slower in our experiments, allowing us to calibrate two additional parameters with respect to the other data sets. Our model is able to distinguish between natural PA decay and that triggered by bacteria via proteases. There is promising consistency between the different independent data sets for most of the parameter estimates. The quantitative characterisation of B. anthracis PA production and degradation obtained here will contribute towards the ambition to include a realistic description of toxin dynamics, the host immune response, and anti-toxin treatments in future mechanistic models of anthrax infection.


Subject(s)
Anthrax Vaccines , Anthrax , Bacillus anthracis , Humans , Bayes Theorem , Anthrax/microbiology , Anthrax/prevention & control
3.
Microorganisms ; 12(1)2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38257993

ABSTRACT

Environmental contamination with Bacillus anthracis spores poses uncertain threats to human health. We undertook a study to determine whether inhabitants of the anthrax-endemic region of Kars in eastern Türkiye could develop immune responses to anthrax toxins without recognised clinical infection. We measured anti-PA and anti-LF IgG antibody concentrations by ELISA in serum from 279 volunteers, 105 of whom had previously diagnosed anthrax infection (100 cutaneous, 5 gastrointestinal). Of the 174 without history of infection, 72 had prior contact with anthrax-contaminated material. Individuals were classified according to demographic parameters, daily working environment, and residence type. All villages in this study had recorded previous animal or human anthrax cases. Stepwise regression analyses showed that prior clinical infection correlated strongly with concentrations at the upper end of the ranges observed for both antibodies. For anti-PA, being a butcher and duration of continuous exposure risk correlated with high concentrations, while being a veterinarian or shepherd, time since infection, and town residence correlated with low concentrations. For anti-LF, village residence correlated with high concentrations, while infection limited to fingers or thumbs correlated with low concentrations. Linear discriminant analysis identified antibody concentration profiles associated with known prior infection. Profiles least typical of prior infection were observed in urban dwellers with known previous infection and in veterinarians without history of infection. Four individuals without history of infection (two butchers, two rural dwellers) had profiles suggesting unrecognised prior infection. Healthy humans therefore appear able to tolerate low-level exposure to environmental B. anthracis spores without ill effect, but it remains to be determined whether this exposure is protective. These findings have implications for authorities tasked with reducing the risk posed to human health by spore-contaminated materials and environments.

4.
Infect Immun ; 92(3): e0045523, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38289122

ABSTRACT

Melioidosis is a disease that is difficult to treat due to the causative organism, Burkholderia pseudomallei being inherently antibiotic resistant and it having the ability to invade, survive, and replicate in an intracellular environment. Combination therapy approaches are routinely being evaluated in animal models with the aim of improving the level of protection and clearance of colonizing bacteria detected. In this study, a subunit vaccine layered with the antibiotic finafloxacin was evaluated in vivo against an inhalational infection with B. pseudomallei in Balb/c mice. Groups of mice vaccinated, infected, and euthanized at antibiotic initiation had a reduced bacterial load compared to those that had not been immunized. In addition, the subunit vaccine provided a synergistic effect when it was delivered with a CpG ODN and finafloxacin was initiated at 48 h post-challenge. Vaccination was also shown to improve the outcome, in a composite measure of survival and clearance. In summary, layering a subunit vaccine with the antibiotic finafloxacin is a promising therapeutic alternative for use in the treatment of B. pseudomallei infections.


Subject(s)
Burkholderia pseudomallei , Melioidosis , Animals , Mice , Mice, Inbred BALB C , Melioidosis/drug therapy , Melioidosis/prevention & control , Anti-Bacterial Agents/therapeutic use , Vaccination , Vaccines, Subunit , Disease Models, Animal
5.
Viruses ; 15(6)2023 05 31.
Article in English | MEDLINE | ID: mdl-37376607

ABSTRACT

Venezuelan equine encephalitis virus (VEEV) is a disease typically confined to South and Central America, whereby human disease is characterised by a transient systemic infection and occasionally severe encephalitis, which is associated with lethality. Using an established mouse model of VEEV infection, the encephalitic aspects of the disease were analysed to identify biomarkers associated with inflammation. Sequential sampling of lethally challenged mice (infected subcutaneously) confirmed a rapid onset systemic infection with subsequent spread to the brain within 24 h of the challenge. Changes in inflammatory biomarkers (TNF-α, CCL-2, and CCL-5) and CD45+ cell counts were found to correlate strongly to pathology (R>0.9) and present previously unproven biomarkers for disease severity in the model, more so than viral titre. The greatest level of pathology was observed within the olfactory bulb and midbrain/thalamus. The virus was distributed throughout the brain/encephalon, often in areas not associated with pathology. The principal component analysis identified five principal factors across two independent experiments, with the first two describing almost half of the data: (1) confirmation of a systemic Th1-biased inflammatory response to VEEV infection, and (2) a clear correlation between specific inflammation of the brain and clinical signs of disease. Targeting strongly associated biomarkers of deleterious inflammation may ameliorate or even eliminate the encephalitic syndrome of this disease.


Subject(s)
Encephalitis Virus, Venezuelan Equine , Encephalomyelitis, Venezuelan Equine , Humans , Horses , Mice , Animals , Tumor Necrosis Factor-alpha , Encephalitis Virus, Venezuelan Equine/physiology , Brain , Inflammation/pathology , Chemokines , Leukocytes
6.
Front Microbiol ; 13: 1057202, 2022.
Article in English | MEDLINE | ID: mdl-36504783

ABSTRACT

Burkholderia mallei, the causative agent of glanders, is principally a disease of equines, although it can also infect humans and is categorized by the U.S. Centers for Disease Control and Prevention as a category B biological agent. Human cases of glanders are rare and thus there is limited information on treatment. It is therefore recommended that cases are treated with the same therapies as used for melioidosis, which for prophylaxis, is co-trimoxazole (trimethoprim/sulfamethoxazole) or co-amoxiclav (amoxicillin/clavulanic acid). In this study, the fluoroquinolone finafloxacin was compared to co-trimoxazole as a post-exposure prophylactic in a murine model of inhalational glanders. BALB/c mice were exposed to an aerosol of B. mallei followed by treatment with co-trimoxazole or finafloxacin initiated at 24 h post-challenge and continued for 14 days. Survival at the end of the study was 55% or 70% for mice treated with finafloxacin or co-trimoxazole, respectively, however, this difference was not significant. However, finafloxacin was more effective than co-trimoxazole in controlling bacterial load within tissues and demonstrating clearance in the liver, lung and spleen following 14 days of therapy. In summary, finafloxacin should be considered as a promising alternative treatment following exposure to B. mallei.

7.
Front Cell Infect Microbiol ; 12: 948464, 2022.
Article in English | MEDLINE | ID: mdl-36405959

ABSTRACT

Ethical research with experimental systems (animals or humans) requires a rationale for the number of subjects to be included in a study. Standard methods for estimating sample size are not fit-for-purpose when the experimenter cannot predict the effect size/outcome with any certainty. These types of studies are often designated "pilot study"; however, there are few guidelines for sample size needed for a pilot study. Here we seek to address this issue. Concerning survival analysis it is noted that the experimenter can adjust the parameters of the experiment to improve the power. We propose that the experimenter needs to consider the "limit of interest" needed to represent an effect that the experimenter would be prepared to defend in terms of scientific or medical interest. Conventional power analysis is then used to estimate the n to deliver an alpha (false positive rate) of p < 0.2. This approach provides a balance that can inform a future study, demonstrate a strong effect or dismiss if no effect was observed. Where weight change or infection burden is considered, parametric analysis can be used. Here the main requirement for the pilot study is to establish a meaningful estimate of variability for subsequent power analysis. When considering the confidence intervals for standard deviations, it can be noted that a turning point is reached for n of four to six, beyond which we observe diminishing returns, suggesting that sample sizes should be greater than four. Finally, we discuss both the importance in statistical blocking and repeated measures in maximising the usefulness of the pilot study; and the importance of considering and outlining analysis techniques prior to performing the experiment. These findings are intended to be useful in the design of experiments in further prospective research.


Subject(s)
Pilot Projects , Humans , Animals , Sample Size
8.
Antibiotics (Basel) ; 11(10)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36290100

ABSTRACT

Burkholderia pseudomallei is the causative agent of melioidosis, a multifaceted disease. A proportion of the mortality and morbidity reported as a result of infection with this organism may be due to the premature cessation of antibiotic therapy typically lasting for several months. The progression of re-emergent disease was characterised in Balb/c mice following cessation of a 14 day treatment course of co-trimoxazole or finafloxacin, delivered at a human equivalent dose. Mice were culled weekly and the infection characterised in terms of bacterial load in tissues, weight loss, clinical signs of infection, cytokine levels and immunological cell counts. Following cessation of treatment, the infection re-established in some animals. Finafloxacin prevented the re-establishment of the infection for longer than co-trimoxazole, and it is apparent based on the protection offered, the development of clinical signs of disease, bodyweight loss and bacterial load, that finafloxacin was more effective at controlling infection when compared to co-trimoxazole.

9.
Front Microbiol ; 13: 934312, 2022.
Article in English | MEDLINE | ID: mdl-36051754

ABSTRACT

The efficacy of finafloxacin as a component of a layered defense treatment regimen was determined in vitro and in vivo against an infection with Burkholderia pseudomallei. Doxycycline was down-selected from a panel of antibiotics evaluated in vitro and used in combination with finafloxacin in a Balb/c mouse model of inhalational melioidosis. When treatment was initiated at 24 h post-infection with B. pseudomallei, there were no differences in the level of protection offered by finafloxacin or doxycycline (as monotherapies) when compared to the combination therapy. There was evidence for improved bacterial control in the groups treated with finafloxacin (as monotherapies or in combination with doxycycline) when compared to mice treated with doxycycline. Survival comparisons of finafloxacin and doxycycline (as monotherapies) or in combination initiated at 36 h post-infection indicated that finafloxacin was superior to doxycycline. Doxycycline was also unable to control the levels of bacteria within tissues to the extent that doxycycline and finafloxacin used in combination or finafloxacin (as a sole therapy) could. In summary, finafloxacin is a promising therapy for use in the event of exposure to B. pseudomallei.

10.
Viruses ; 14(8)2022 08 13.
Article in English | MEDLINE | ID: mdl-36016391

ABSTRACT

A transduced mouse model of SARS-CoV-2 infection was established using Balb/c mice. This was achieved through the adenovirus-vectored delivery of the hACE2 gene, to render the mice transiently susceptible to the virus. The model was characterised in terms of the dissemination of hACE2 receptor expression, the dissemination of three SARS-CoV-2 virus variants in vivo up to 10 days following challenge, the resulting histopathology and the clinical signs induced in the mice. In transduced mice, the infection was short-term, with a rapid loss in body weight starting at day 2 with maximum weight loss at day 4, followed by subsequent recovery until day 10. The induced expression of the hACE2 receptor was evident in the lungs, but, upon challenge, the SARS-CoV-2 virus disseminated beyond the lungs to spleen, liver and kidney, peaking at day 2 post infection. However, by day 10 post infection, the virus was undetectable. The lung histopathology was characterised by bronchial and alveolar inflammation, which was still present at day 10 post infection. Transduced mice had differential responses to viral variants ranking CVR-Glasgow 1 > Victoria-1 > England-2 isolates in terms of body weight loss. The transduced mouse model provides a consistent and manipulatable model of SARS-CoV-2 infection to screen viral variants for their relative virulence and possible interventions.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Animals , Disease Models, Animal , Lung , Mice , Mice, Inbred C57BL , Mice, Transgenic , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2/genetics
11.
Viruses ; 14(7)2022 07 21.
Article in English | MEDLINE | ID: mdl-35891560

ABSTRACT

There is an enduring requirement to develop animal models of COVID-19 to assess the efficacy of vaccines and therapeutics that can be used to treat the disease in humans. In this study, six marmosets were exposed to a small particle aerosol (1-3 µm) of SARS-CoV-2 VIC01 that delivered the virus directly to the lower respiratory tract. Following the challenge, marmosets did not develop clinical signs, although a disruption to the normal diurnal temperature rhythm was observed in three out of six animals. Early weight loss and changes to respiratory pattern and activity were also observed, yet there was limited evidence of viral replication or lung pathology associated with infection. There was a robust innate immunological response to infection, which included an early increase in circulating neutrophils and monocytes and a reduction in the proportion of circulating T-cells. Expression of the ACE2 receptor in respiratory tissues was almost absent, but there was ubiquitous expression of TMPRSS2. The results of this study indicate that exposure of marmosets to high concentrations of aerosolised SARS-CoV-2 did not result in the development of clear, reproducible signs of COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Animals , Callithrix/metabolism , Humans , Peptidyl-Dipeptidase A/metabolism
12.
Vaccines (Basel) ; 10(2)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35214604

ABSTRACT

Background: The need for an updated plague vaccine is highlighted by outbreaks in endemic regions together with the pandemic potential of this disease. There is no easily available, approved vaccine. Methods: Here we have used a murine model of pneumonic plague to examine the factors that maximise immunogenicity and contribute to survival following vaccination. We varied vaccine type, as either a genetic fusion of the F1 and V protein antigens or a mixture of these two recombinant antigens, as well as antigen dose-level and formulation in order to correlate immune response to survival. Results: Whilst there was interaction between each of the variables of vaccine type, dose level and formulation and these all contributed to survival, vaccine formulation in protein-coated microcrystals (PCMCs) was the key contributor in inducing antibody titres. From these data, we propose a cut-off in total serum antibody titre to the F1 and V proteins of 100 µg/mL and 200 µg/mL, respectively. At these thresholds, survival is predicted in this murine pneumonic model to be >90%. Within the total titre of antibody to the V antigen, the neutralising antibody component correlated with dose level and was enhanced when the V antigen in free form was formulated in PCMCs. Antibody titre to F1 was limited by fusion to V, but this was compensated for by PCMC formulation. Conclusions: These data will enable clinical assessment of this and other candidate plague vaccines that utilise the same vaccine antigens by identifying a target antibody titre from murine models, which will guide the evaluation of clinical titres as serological surrogate markers of efficacy.

13.
Front Immunol ; 12: 688257, 2021.
Article in English | MEDLINE | ID: mdl-34497601

ABSTRACT

We present a stochastic mathematical model of the intracellular infection dynamics of Bacillus anthracis in macrophages. Following inhalation of B. anthracis spores, these are ingested by alveolar phagocytes. Ingested spores then begin to germinate and divide intracellularly. This can lead to the eventual death of the host cell and the extracellular release of bacterial progeny. Some macrophages successfully eliminate the intracellular bacteria and will recover. Here, a stochastic birth-and-death process with catastrophe is proposed, which includes the mechanism of spore germination and maturation of B. anthracis. The resulting model is used to explore the potential for heterogeneity in the spore germination rate, with the consideration of two extreme cases for the rate distribution: continuous Gaussian and discrete Bernoulli. We make use of approximate Bayesian computation to calibrate our model using experimental measurements from in vitro infection of murine peritoneal macrophages with spores of the Sterne 34F2 strain of B. anthracis. The calibrated stochastic model allows us to compute the probability of rupture, mean time to rupture, and rupture size distribution, of a macrophage that has been infected with one spore. We also obtain the mean spore and bacterial loads over time for a population of cells, each assumed to be initially infected with a single spore. Our results support the existence of significant heterogeneity in the germination rate, with a subset of spores expected to germinate much later than the majority. Furthermore, in agreement with experimental evidence, our results suggest that most of the spores taken up by macrophages are likely to be eliminated by the host cell, but a few germinated spores may survive phagocytosis and lead to the death of the infected cell. Finally, we discuss how this stochastic modelling approach, together with dose-response data, allows us to quantify and predict individual infection risk following exposure.


Subject(s)
Anthrax/microbiology , Bacillus anthracis/pathogenicity , Macrophages, Peritoneal/microbiology , Models, Biological , Spores, Bacterial/pathogenicity , Animals , Anthrax/immunology , Anthrax/pathology , Bacillus anthracis/growth & development , Bacillus anthracis/immunology , Bayes Theorem , Cell Death , Computer Simulation , Disease Models, Animal , Host-Pathogen Interactions , Inhalation Exposure , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/pathology , Mice , Microbial Viability , Phagocytosis , Population Density , Spores, Bacterial/growth & development , Spores, Bacterial/immunology , Stochastic Processes , Time Factors
14.
J Gen Virol ; 102(4)2021 04.
Article in English | MEDLINE | ID: mdl-33891534

ABSTRACT

A small-scale study with Mosi-guard Natural spray, an insect repellent containing Citriodiol, was performed to determine if it has virucidal activity against SARS-CoV-2. A liquid test examined the activity of the insect repellent and the individual components for virucidal activity. A surface contact test looked at the activity of the insect repellent when impregnated on a latex surface as a synthetic skin for potential topical prophylactic application. Both Mosi-guard Natural spray and Citriodiol, as well as other components of the repellent, had virucidal activity in the liquid contact test. On a latex surface used to simulate treated skin, the titre of SARS-CoV-2 was less over time on the Mosi-guard Natural-treated surface but virus was still recovered.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Insect Repellents/therapeutic use , SARS-CoV-2/drug effects , Humans , Plant Extracts/therapeutic use
15.
Article in English | MEDLINE | ID: mdl-33753342

ABSTRACT

Infection with aerosolized Francisella tularensis or Yersinia pestis can lead to lethal disease in humans if treatment is not initiated promptly. Finafloxacin is a novel fluoroquinolone which has demonstrated broad-spectrum activity against a range of bacterial species in vitro, in vivo, and in humans, activity which is superior in acidic, infection-relevant conditions. Human-equivalent doses of finafloxacin or ciprofloxacin were delivered at 24 h (representing prophylaxis) or at 72 or 38 h (representing treatment) postchallenge with F. tularensis or Y. pestis, respectively, in BALB/c mouse models. In addition, a short course of therapy (3 days) was compared to a longer course (7 days). Both therapies provided a high level of protection against both infections when administered at 24 h postchallenge, irrespective of the length of the dosing regimen; however, differences were observed when therapy was delayed. A benefit was demonstrated with finafloxacin compared to ciprofloxacin in both models when therapy was delivered later in the infection. These studies suggest that finafloxacin is an effective alternative therapeutic for the prophylaxis and treatment of inhalational infections with F. tularensis or Y. pestis.


Subject(s)
Francisella tularensis , Plague , Tularemia , Animals , Fluoroquinolones/therapeutic use , Mice , Mice, Inbred BALB C , Plague/drug therapy , Plague/prevention & control , Tularemia/drug therapy
16.
PLoS Comput Biol ; 16(11): e1008375, 2020 11.
Article in English | MEDLINE | ID: mdl-33137116

ABSTRACT

Mathematical modelling has successfully been used to provide quantitative descriptions of many viral infections, but for the Ebola virus, which requires biosafety level 4 facilities for experimentation, modelling can play a crucial role. Ebola virus modelling efforts have primarily focused on in vivo virus kinetics, e.g., in animal models, to aid the development of antivirals and vaccines. But, thus far, these studies have not yielded a detailed specification of the infection cycle, which could provide a foundational description of the virus kinetics and thus a deeper understanding of their clinical manifestation. Here, we obtain a diverse experimental data set of the Ebola virus infection in vitro, and then make use of Bayesian inference methods to fully identify parameters in a mathematical model of the infection. Our results provide insights into the distribution of time an infected cell spends in the eclipse phase (the period between infection and the start of virus production), as well as the rate at which infectious virions lose infectivity. We suggest how these results can be used in future models to describe co-infection with defective interfering particles, which are an emerging alternative therapeutic.


Subject(s)
Ebolavirus/physiology , Models, Biological , Virus Replication/physiology , Animals , Bayes Theorem , Chlorocebus aethiops , Computational Biology , Computer Simulation , Ebolavirus/genetics , Ebolavirus/pathogenicity , Hemorrhagic Fever, Ebola/virology , Host Microbial Interactions/physiology , Humans , In Vitro Techniques , Kinetics , Markov Chains , Monte Carlo Method , Reverse Transcriptase Polymerase Chain Reaction , Vero Cells , Viral Load/physiology
17.
PLoS Comput Biol ; 16(6): e1007752, 2020 06.
Article in English | MEDLINE | ID: mdl-32479491

ABSTRACT

We study the pathogenesis of Francisella tularensis infection with an experimental mouse model, agent-based computation and mathematical analysis. Following inhalational exposure to Francisella tularensis SCHU S4, a small initial number of bacteria enter lung host cells and proliferate inside them, eventually destroying the host cell and releasing numerous copies that infect other cells. Our analysis of disease progression is based on a stochastic model of a population of infectious agents inside one host cell, extending the birth-and-death process by the occurrence of catastrophes: cell rupture events that affect all bacteria in a cell simultaneously. Closed expressions are obtained for the survival function of an infected cell, the number of bacteria released as a function of time after infection, and the total bacterial load. We compare our mathematical analysis with the results of agent-based computation and, making use of approximate Bayesian statistical inference, with experimental measurements carried out after murine aerosol infection with the virulent SCHU S4 strain of the bacterium Francisella tularensis, that infects alveolar macrophages. The posterior distribution of the rate of replication of intracellular bacteria is consistent with the estimate that the time between rounds of bacterial division is less than 6 hours in vivo.


Subject(s)
Francisella tularensis/cytology , Lung/microbiology , Tularemia/microbiology , Animals , Bayes Theorem , Computational Biology , Cytosol/metabolism , Disease Models, Animal , Female , Macrophages, Alveolar/microbiology , Mice , Mice, Inbred BALB C , Models, Theoretical , Phagosomes/metabolism , Probability , Stochastic Processes , Virulence
18.
Article in English | MEDLINE | ID: mdl-32373552

ABSTRACT

As the ongoing outbreak in the Democratic Republic of Congo illustrates, Ebola virus disease continues to pose a significant risk to humankind and this necessitates the continued development of therapeutic options. One option that warrants evaluation is that of defective genomes; these can potentially parasitize resources from the wild-type virus and may even be packaged for repeated co-infection cycles. Deletion and copy-back defective genomes have been identified and reported in the literature. As a crude, mixed preparation these were found to have limiting effects on cytopathology. Here we have used synthetic virology to clone and manufacture two deletion defective genomes. These genomes were tested with Ebola virus using in vitro cell culture and shown to inhibit viral replication; however, and against expectations, the defective genomes were not released in biologically significant numbers. We propose that EBOV might have yet unknown mechanisms to prevent parasitisation by defective interfering particles beyond the known mechanism that prevents sequential infection of the same cell. Understanding this mechanism would be necessary in any development of a defective interfering particle-based therapy.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Congo , Ebolavirus/genetics , Genome, Viral , Humans , Virus Replication
19.
Front Microbiol ; 10: 904, 2019.
Article in English | MEDLINE | ID: mdl-31118924

ABSTRACT

The efficacy of the novel fluoroquinolone finafloxacin was evaluated as a potential therapeutic in vitro and in vivo, following an intranasal infection of Francisella tularensis strain SchuS4 in BALB/c mice. We demonstrated that short treatment courses of finafloxacin provide high levels of protection, with a single dose resulting in a significant increase in time to death when compared to ciprofloxacin. In addition, following investigation into the window of opportunity for treatment, we have shown that finafloxacin can provided protection when administered up to 96 h post-challenge. This is particularly encouraging since mice displayed severe signs of disease at this time point. In summary, finafloxacin may be a promising therapy for use in the event of exposure to F. tularensis, perhaps enabling the treatment regimen to be shortened or if therapy is delayed. The efficacy of finafloxacin against other biological threat agents also warrants investigation.

20.
Expert Rev Anti Infect Ther ; 17(12): 957-967, 2019 12.
Article in English | MEDLINE | ID: mdl-30626237

ABSTRACT

Introduction: Melioidosis is a significant health problem within endemic areas such as Southeast Asia and Northern Australia. The varied presentation of melioidosis and the intrinsic antibiotic resistance of Burkholderia pseudomallei, the causative organism, make melioidosis a difficult infection to manage. Often prolonged courses of antibiotic treatments are required with no guarantee of clinical success.Areas covered: B. pseudomallei is able to enter phagocytic cells, affect immune function, and replicate, via manipulation of the caspase system. An examination of this mechanism, and a look at other factors in the pathogenesis of melioidosis, shows that there are multiple potential points of therapeutic intervention, some of which may be complementary. These include the directed use of antimicrobial compounds, blocking virulence mechanisms, balancing or modulating cytokine responses, and ameliorating sepsis.Expert commentary: There may be therapeutic options derived from drugs in clinical use for unrelated conditions that may have benefit in melioidosis. Key compounds of interest primarily affect the disequilibrium of the cytokine response, and further preclinical work is needed to explore the utility of this approach and encourage the clinical research needed to bring these into beneficial use.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Melioidosis/drug therapy , Animals , Anti-Bacterial Agents/pharmacology , Burkholderia pseudomallei/drug effects , Burkholderia pseudomallei/isolation & purification , Drug Repositioning , Drug Resistance, Bacterial , Humans , Melioidosis/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...