Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 58(5): 3355-3363, 2019 Mar 04.
Article in English | MEDLINE | ID: mdl-30767521

ABSTRACT

Trimethylaluminum finds widespread applications in chemical and materials synthesis, most prominently in its partially hydrolyzed form of methylalumoxane (MAO), which is used as a cocatalyst in the polymerization of olefins. This work investigates the sequential reactions of trimethylaluminum with hexaprotic phosphazenes (RNH)6P3N3 (=XH6) equipped with substituents R of varied steric bulk including tert-butyl (1H6), cyclohexyl (2H6), isopropyl (3H6), isobutyl (4H6), ethyl (5H6), propyl (6H6), methyl (7H6), and benzyl (8H6). Similar to MAO, the resulting complexes of polyanionic phosphazenates [XH n] n-6 accommodate multinuclear arrays of [AlMe2]+ and [AlMe]2+. Reactions were monitored by 31P NMR spectroscopy, and structures were determined by single-crystal X-ray diffraction. They included 1H4(AlMe2)2, 1H3(AlMe2)3, 2H3(AlMe2)3, 3(AlMe2)4AlMe, 4H(AlMe2)5, 4(AlMe2)6, {5H(AlMe2)4}2AlMe, 5(AlMe2)6, 6(AlMe2)6, {7(AlMe2)4AlMe}2, and 8(AlMe2)6. The study shows that subtle variations of the steric properties of the R groups influence the reaction pathways, levels of aggregation, and fluxional behavior. While [AlMe2]+ is the primary product of the metalation, [AlMe]2+ is utilized to alleviate overcrowding or to aid aggregation. At the later stages of metalation, [AlMe2]+ groups start to scramble around congested sites. The ligands proved to be very robust and extremely flexible, offering a unique platform to study complex multinuclear metal arrangements.

2.
Chemistry ; 13(4): 1078-89, 2007.
Article in English | MEDLINE | ID: mdl-17086565

ABSTRACT

The reactions of the SnII base Sn(NMe2)2 with CyPHM (Cy=cyclohexyl) produce a range of products, depending primarily on the alkali metal (M) involved. The 1:3 stoichiometric reaction of Sn(NMe2)2 with CyPHNa in the presence of the Lewis base donor PMDETA (PMDETA=(Me2NCH2CH2)2NMe) gives [(NaPMDETA)2{Sn(mu-PCy)}3] (3), containing the electron-deficient [{Sn(mu-PCy)}3]2- dianion. Natural bond order (NBO) and electron localisation function (ELF) calculations show that this species is described most appropriately by a two-electron, three-centre Sn3 bonding model. Evidence that 3 results from phosphide coupling is provided by the 1:1 reaction of Sn(NMe2)2 with CyPHNa in the presence of PMDETA, which gives 3 and trace amounts of (NaPMDETA)2[{Sn(mu-PCy)}2(mu-PCyPCy)] (4) (containing one PCyPCy2- dianion). Greater extents of phosphide coupling are observed as the size of the Group 1 metal is increased. Thus, the 1:3 reaction of Sn(NMe2)2 with CyPHK in THF gives the co-crystalline product {(K2 THF)2[{Sn(mu-PCyPCy)}2(mu-PCy)]}0.9{(K2 THF)2[{Sn(mu-PCy)}2(mu-PCyPCy)]}0.1 (5) (containing [{Sn(mu-PCyPCy)}2(mu-PCy)]2- and [{Sn(mu-PCy)}2(mu-PCyPCy)]2- dianions), whereas the analogous reaction of Sn(NMe2)2 with RbPHCy gives [RbPMDETA{(CyP)3SnP(H)Cy}] (6) (containing a cyclic {(CyP)3Sn} unit).

3.
Chem Commun (Camb) ; (11): 1288-9, 2003 Jun 07.
Article in English | MEDLINE | ID: mdl-12809234

ABSTRACT

The reaction of CyPHNa with Sn(NMe2)2 in the presence of PMDETA (= (Me2NCH2CH2)2NMe) gives the title compound [(Sn(mu-PCy))3(Na x PMDETA)2] (1), containing an electron-deficient [(Sn(mu-PCy))]3(2-) dianion with a novel two-electron, three centre (2e-3c) bonding arrangement.

4.
Chemistry ; 8(15): 3377-85, 2002 Aug 02.
Article in English | MEDLINE | ID: mdl-12203318

ABSTRACT

Amination of [ClP(micro-NtBu)](2) (1) using NH(3) in THF gives the cyclophospha(III)zane dimer [H(2)NP(micro-NtBu)](2) (2), in good yield. (31)P NMR spectroscopic studies of the reaction of 1 with 2 in THF/Et(3)N show that almost quantitative formation of the cyclic tetramer [[P(micro-NtBu)](2)(micro-NH)](4) (3) occurs. The remarkable selectivity of this reaction can (in part) be attributed to pre-organisation of 1 and 2, which prefer cis arrangements in the solid state and solution. The macrocycle 3 can be isolated in yields of 58-67 % using various reaction scales. The isolation of the major by-product of the reaction (ca. 0.5-1 % of samples of 3), the pentameric, host-guest complex [[P(micro-NtBu)(2)](2)(micro-NH)](5)(HCl).2 THF] (4.2 THF), gives a strong indication of the mechanism involved. In situ (31)P NMR spectroscopic studies support a stepwise condensation mechanism in which Cl(-) ions play an important role in templating and selection of 3 and 4. Amplification of the pentameric arrangement occurs in the presence of excess LiX (X=Cl, Br, I). In addition, the cyclisation reaction is solvent- and anion-dependent. The X-ray structures of 2 and 4.2 THF are reported.

5.
Chem Commun (Camb) ; (12): 1276-7, 2002 Jun 21.
Article in English | MEDLINE | ID: mdl-12109113

ABSTRACT

The novel, deca-lithium cage [(mtaNHLi)(As2(Nmta)5)-Li(4).2thf]2 (1) (mtaN = 5-methylthiazolyl, C4H4N2S) contains an imido-bridged tetraanion [(mtaN)2As(mu-Nmta)-As(Nmta)2]4-, which represents a new type of multi-functional imido group 15 ligand framework (homologous with group 15 anions of the type [As(NR)3]3-).

6.
Chemistry ; 8(24): 5723-31, 2002 Dec 16.
Article in English | MEDLINE | ID: mdl-12693054

ABSTRACT

The reaction of the dimeric phospha(III)zane [ClP(mu-Npy)]2 (1) (py = 2-pyridyl) with pyNHLi (2:1 equivalents, respectively) in THF/Et3N leads to rapid formation of the bicyclic nona-phospha(III)zane [[ClP(Npy)2]2-[P2(Npy)]] (2). This novel rearrangement can be rationalised by a mechanism involving "twisting (or swivelling)" of the central P(mu-Npy)P fragment of the presumed intermediate [[ClP(mu-Npy)2P]2(mu-Npy)] (3), a process that provides a fundamental mechanistic relationship between the majority of previously reported imidophosphospha(III)zanes. This process is fundamentally reliant on relief from ring strain on going from the four-membered ring units of 3 to the six-membered units of 2. The rearrangement observed for 1 is suppressed on steric grounds by Me-substitution of the pyridine ring at the 6-position, the dimeric phosphazane [ClP(mu-N-6-Me-py)]2 (4) (6-Me-py = 6-methyl-2-pyridyl) being formed almost exclusively in the 1:1 reaction of PCl3 with 6-Me-pyNHLi. The syntheses and X-ray structures of 1, 2 and 4 are reported, together with 31P NMR spectroscopic and DFT calculational studies of the conversion of models of 1 into 2. The combined studies pinpoint relief from ring strain as the key factor dictating the rearrangement.

SELECTION OF CITATIONS
SEARCH DETAIL
...