Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
PLoS One ; 18(9): e0291330, 2023.
Article in English | MEDLINE | ID: mdl-37682977

ABSTRACT

Some health concerns are often not identified until late into clinical development of drugs, which can place participants and patients at significant risk. For example, the United States Food and Drug Administration (FDA) labeled the xanthine oxidase inhibitor febuxostat with a"boxed" warning regarding an increased risk of cardiovascular death, and this safety risk was only identified during Phase 3b clinical trials after its approval. Thus, better preclinical assessment of drug efficacy and safety are needed to accurately evaluate candidate drug risk earlier in discovery and development. This study explored whether an in vitro vascular model incorporating human vascular cells and hemodynamics could be used to differentiate the potential cardiovascular risk associated with molecules that have similar on-target mechanisms of action. We compared the transcriptomic responses induced by febuxostat and other xanthine oxidase inhibitors to a database of 111 different compounds profiled in the human vascular model. Of the 111 compounds in the database, 107 are clinical-stage and 33 are FDA-labelled for increased cardiovascular risk. Febuxostat induces pathway-level regulation that has high similarity to the set of drugs FDA-labelled for increased cardiovascular risk. These results were replicated with a febuxostat analog, but not another structurally distinct xanthine oxidase inhibitor that does not confer cardiovascular risk. Together, these data suggest that the FDA warning for febuxostat stems from the chemical structure of the medication itself, rather than the target, xanthine oxidase. Importantly, these data indicate that cardiovascular risk can be evaluated in this in vitro human vascular model, which may facilitate understanding the drug candidate safety profile earlier in discovery and development.


Subject(s)
Cardiovascular Diseases , United States , Humans , Cardiovascular Diseases/chemically induced , Xanthine Oxidase , Febuxostat/pharmacology , Risk Factors , Enzyme Inhibitors/adverse effects , Heart Disease Risk Factors
2.
JHEP Rep ; 3(2): 100217, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33490936

ABSTRACT

BACKGROUND & AIMS: Increasing evidence highlights dietary fructose as a major driver of non-alcoholic fatty liver disease (NAFLD) pathogenesis, the majority of which is cleared on first pass through the hepatic circulation by enzymatic phosphorylation to fructose-1-phosphate via the ketohexokinase (KHK) enzyme. Without a current approved therapy, disease management emphasises lifestyle interventions, but few patients adhere to such strategies. New targeted therapies are urgently required. METHODS: We have used a unique combination of human liver specimens, a murine dietary model of NAFLD and human multicellular co-culture systems to understand the hepatocellular consequences of fructose administration. We have also performed a detailed nuclear magnetic resonance-based metabolic tracing of the fate of isotopically labelled fructose upon administration to the human liver. RESULTS: Expression of KHK isoforms is found in multiple human hepatic cell types, although hepatocyte expression predominates. KHK knockout mice show a reduction in serum transaminase, reduced steatosis and altered fibrogenic response on an Amylin diet. Human co-cultures exposed to fructose exhibit steatosis and activation of lipogenic and fibrogenic gene expression, which were reduced by pharmacological inhibition of KHK activity. Analysis of human livers exposed to 13C-labelled fructose confirmed that steatosis, and associated effects, resulted from the accumulation of lipogenic precursors (such as glycerol) and enhanced glycolytic activity. All of these were dose-dependently reduced by administration of a KHK inhibitor. CONCLUSIONS: We have provided preclinical evidence using human livers to support the use of KHK inhibition to improve steatosis, fibrosis, and inflammation in the context of NAFLD. LAY SUMMARY: We have used a mouse model, human cells, and liver tissue to test how exposure to fructose can cause the liver to store excess fat and become damaged and scarred. We have then inhibited a key enzyme within the liver that is responsible for fructose metabolism. Our findings show that inhibition of fructose metabolism reduces liver injury and fibrosis in mouse and human livers and thus this may represent a potential route for treating patients with fatty liver disease in the future.

3.
Sci Rep ; 9(1): 12541, 2019 08 29.
Article in English | MEDLINE | ID: mdl-31467298

ABSTRACT

The heterogeneity of biological processes driving the severity of nonalcoholic fatty liver disease (NAFLD) as reflected in the transcriptome and the relationship between the pathways involved are not well established. Well-defined associations between gene expression profiles and disease progression would benefit efforts to develop novel therapies and to understand disease heterogeneity. We analyzed hepatic gene expression in controls and a cohort with the full histological spectrum of NAFLD. Protein-protein interaction and gene set variation analysis revealed distinct sets of coordinately regulated genes and pathways whose expression progressively change over the course of the disease. The progressive nature of these changes enabled us to develop a framework for calculating a disease progression score for individual genes. We show that, in aggregate, these scores correlate strongly with histological measures of disease progression and can thus themselves serve as a proxy for severity. Furthermore, we demonstrate that the expression levels of a small number of genes (~20) can be used to infer disease severity. Finally, we show that patient subgroups can be distinguished by the relative distribution of gene-level scores in specific gene sets. While future work is required to identify the specific disease characteristics that correspond to patient clusters identified on this basis, this work provides a general framework for the use of high-content molecular profiling to identify NAFLD patient subgroups.


Subject(s)
Non-alcoholic Fatty Liver Disease/genetics , Cohort Studies , Disease Progression , Gene Expression Profiling , Histology , Humans , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Proteins/genetics , Proteins/metabolism , Transcriptome
4.
JCI Insight ; 1(20): e90954, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27942596

ABSTRACT

A barrier to drug development for nonalcoholic steatohepatitis (NASH) is the absence of translational preclinical human-relevant systems. An in vitro liver model was engineered to incorporate hepatic sinusoidal flow, transport, and lipotoxic stress risk factors (glucose, insulin, free fatty acids) with cocultured primary human hepatocytes, hepatic stellate cells (HSCs), and macrophages. Transcriptomic, lipidomic, and functional endpoints were evaluated and compared with clinical data from NASH patient biopsies. The lipotoxic milieu promoted hepatocyte lipid accumulation (4-fold increase, P < 0.01) and a lipidomics signature similar to NASH biopsies. Hepatocyte glucose output increased with decreased insulin sensitivity. These changes were accompanied by increased inflammatory analyte secretion (e.g., IL-6, IL-8, alanine aminotransferase). Fibrogenic activation markers increased with lipotoxic conditions, including secreted TGF-ß (>5-fold increase, P < 0.05), extracellular matrix gene expression, and HSC activation. Significant pathway correlation existed between this in vitro model and human biopsies. Consistent with clinical trial data, 0.5 µM obeticholic acid in this model promoted a healthy lipidomic signature, reduced inflammatory and fibrotic secreted factors, but also increased ApoB secretion, suggesting a potential adverse effect on lipoprotein metabolism. Lipotoxic stress activates similar biological signatures observed in NASH patients in this system, which may be relevant for interrogating novel therapeutic approaches to treat NASH.


Subject(s)
Coculture Techniques , Hepatic Stellate Cells/cytology , Hepatocytes/cytology , Macrophages/cytology , Non-alcoholic Fatty Liver Disease/physiopathology , Animals , Glucose/metabolism , Humans , Inflammation , Insulin Resistance , Lipids/analysis , Liver , Metabolome , Mice, Inbred C57BL , Models, Biological , Transcriptome
5.
Chem Biol Interact ; 255: 31-44, 2016 Aug 05.
Article in English | MEDLINE | ID: mdl-26626330

ABSTRACT

Drug induced liver injury (DILI), a major cause of pre- and post-approval failure, is challenging to predict pre-clinically due to varied underlying direct and indirect mechanisms. Nevirapine, a non-nucleoside reverse transcriptase inhibitor (NNRTI) and Ritonavir, a protease inhibitor, are antiviral drugs that cause clinical DILI with different phenotypes via different mechanisms. Assessing DILI in vitro in hepatocyte cultures typically requires drug exposures significantly higher than clinical plasma Cmax concentrations, making clinical interpretations of mechanistic pathway changes challenging. We previously described a system that uses liver-derived hemodynamic blood flow and transport parameters to restore primary human hepatocyte biology, and drug responses at concentrations relevant to in vivo or clinical exposure levels. Using this system, primary hepatocytes from 5 human donors were exposed to concentrations approximating clinical therapeutic and supra-therapeutic levels of Nevirapine (11.3 and 175.0 µM) and Ritonavir (3.5 and 62.4 µM) for 48 h. Whole genome transcriptomics was performed by RNAseq along with functional assays for metabolic activity and function. We observed effects at both doses, but a greater number of genes were differentially expressed with higher probability at the toxic concentrations. At the toxic doses, both drugs showed direct cholestatic potential with Nevirapine increasing bile synthesis and Ritonavir inhibiting bile acid transport. Clear differences in antigen presentation were noted, with marked activation of MHC Class I by Nevirapine and suppression by Ritonavir. This suggests CD8+ T cell involvement for Nevirapine and possibly NK Killer cells for Ritonavir. Both compounds induced several drug metabolizing genes (including CYP2B6, CYP3A4 and UGT1A1), mediated by CAR activation in Nevirapine and PXR in Ritonavir. Unlike Ritonavir, Nevirapine did not increase fatty acid synthesis or activate the respiratory electron chain with simultaneous mitochondrial uncoupling supporting clinical reports of a lower propensity for steatosis. This in vitro study offers insights into the disparate direct and immune-mediated toxicity mechanisms underlying Nevirapine and Ritonavir toxicity in the clinic.


Subject(s)
Anti-HIV Agents/toxicity , Chemical and Drug Induced Liver Injury/genetics , Hepatocytes/drug effects , Nevirapine/toxicity , Ritonavir/toxicity , Transcriptome , Cell Culture Techniques/methods , Cells, Cultured , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/pathology , Drug Evaluation, Preclinical/methods , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Liver/drug effects , Liver/metabolism , Liver/pathology
6.
BMC Genomics ; 13: 402, 2012 Aug 17.
Article in English | MEDLINE | ID: mdl-22900582

ABSTRACT

BACKGROUND: Cowpea, Vigna unguiculata L. Walp., is one of the most important food and forage legumes in the semi-arid tropics. While most domesticated forms of cowpea are susceptible to the root parasitic weed Striga gesnerioides, several cultivars have been identified that show race-specific resistance. Cowpea cultivar B301 contains the RSG3-301 gene for resistance to S. gesnerioides race SG3, but is susceptible to race SG4z. When challenged by SG3, roots of cultivar B301 develop a strong resistance response characterized by a hypersensitive reaction and cell death at the site of parasite attachment. In contrast, no visible response occurs in B301 roots parasitized by SG4z. RESULTS: Gene expression in the roots of the cowpea cultivar B301 during compatible (susceptible) and incompatible (resistant) interactions with S. gesnerioides races SG4z and SG3, respectively, were investigated at the early (6 days post-inoculation (dpi)) and late (13 dpi) stages of the resistance response using a Nimblegen custom design cowpea microarray. A total of 111 genes were differentially expressed in B301 roots at 6 dpi; this number increased to 2102 genes at 13 dpi. At 13 dpi, a total of 1944 genes were differentially expressed during compatible (susceptible) interactions of B301 with SG4z. Genes and pathways involved in signal transduction, programmed cell death and apoptosis, and defense response to biotic and abiotic stress were differentially expressed in the early resistance response; at the later time point, enrichment was primarily for defense-related gene expression, and genes encoding components of lignifications and secondary wall formation. In compatible interactions (B301-SG4z), multiple defense pathways were repressed, including those involved in lignin biosynthesis and secondary cell wall modifications, while cellular transport processes for nitrogen and sulfur were increased. CONCLUSION: Distinct changes in global gene expression profiles occur in host roots following successful and unsuccessful attempted parasitism by Striga. Induction of specific defense related genes and pathways defines components of a unique resistance mechanism. Some genes and pathways up-regulated in the host resistance response to SG3 are repressed in the susceptible interactions, suggesting that the parasite is targeting specific components of the host's defense. These results add to our understanding of plant-parasite interactions and the evolution of resistance to parasitic weeds.


Subject(s)
Genes, Plant , Striga/genetics , Fabaceae/genetics , Fabaceae/parasitology , Gene Expression Regulation, Plant , Host-Parasite Interactions , Plant Diseases/genetics , Plant Diseases/parasitology , Plant Roots/genetics , Plant Roots/parasitology , Striga/physiology , Symbiosis
7.
Nucleic Acids Res ; 37(14): 4570-9, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19487239

ABSTRACT

Gene conversion can have a profound impact on both the short- and long-term evolution of genes and genomes. Here, we examined the gene families that are located on the X-chromosomes of human (Homo sapiens), chimpanzee (Pan troglodytes), mouse (Mus musculus) and rat (Rattus norvegicus) for evidence of gene conversion. We identified seven gene families (WD repeat protein family, Ferritin Heavy Chain family, RAS-related Protein RAB-40 family, Diphosphoinositol polyphosphate phosphohydrolase family, Transcription Elongation Factor A family, LDOC1-related family, Zinc Finger Protein ZIC, and GLI family) that show evidence of gene conversion. Through phylogenetic analyses and synteny evidence, we show that gene conversion has played an important role in the evolution of these gene families and that gene conversion has occurred independently in both primates and rodents. Comparing the results with those of two gene conversion prediction programs (GENECONV and Partimatrix), we found that both GENECONV and Partimatrix have very high false negative rates (i.e. failed to predict gene conversions), which leads to many undetected gene conversions. The combination of phylogenetic analyses with physical synteny evidence exhibits high resolution in the detection of gene conversions.


Subject(s)
Gene Conversion , Genes, X-Linked , X Chromosome , Animals , Chromosomes, Human, X , Humans , Macaca mulatta , Mice , Multigene Family , Pan troglodytes/genetics , Phylogeny , Rats , Software , Synteny
8.
Comp Funct Genomics ; : 761512, 2009.
Article in English | MEDLINE | ID: mdl-20148076

ABSTRACT

Gene conversion is an important biological process that involves the transfer of genetic (sequence) information from one gene to another. This can have a variety of effects on an organism, both short-term and long-term and both positive and detrimental. In an effort to better understand this process, we searched through over 3,000 abstracts that contain research on gene conversions, tagging the important data and performing an analysis on what we extract. Through this we established trends that give a better insight into gene conversion research and genetic research in general. Our results show the importance of the process and the importance of continuing gene conversion research.

9.
Gene ; 407(1-2): 54-62, 2008 Jan 15.
Article in English | MEDLINE | ID: mdl-17964742

ABSTRACT

SSRs (simple sequence repeats) have been shown to have a variety of effects on an organism. In this study, we compared SSRs in housekeeping and tissue-specific genes in human and mouse, in terms of SSR types and distributions in different regions including 5'-UTRs, introns, coding exons, 3'-UTRs, and upstream regions. Among all these regions, SSRs in the 5'-UTR show the most distinction between housekeeping genes and tissue-specific genes in both densities and repeat types. Specifically, SSR densities in 5'-UTRs in housekeeping genes are about 1.7 times higher than those in tissue-specific genes, in contrast to the 0.8-1.2 times differences between the two classes of genes in other regions. Tri-SSRs in 5'-UTRs of housekeeping genes are more GC rich than those of tissue-specific genes and CGG, the dominant type of tri-SSR in 5'-UTR, accounts for 74-79% of the tri-SSRs in housekeeping genes, as compared to 42-57% in tissue-specific genes. 75% of the tri-SSRs in the 5'-UTR of housekeeping genes have 4-5 repeat units, versus the 86-90% in tissue-specific genes. Taken together, our results suggest that SSRs may have an effect on gene expression and may play an important role in contributing to the different expression profiles between housekeeping and tissue-specific genes.


Subject(s)
5' Untranslated Regions/chemistry , GC Rich Sequence/physiology , Gene Expression Regulation , Microsatellite Repeats/physiology , Animals , Base Sequence , GC Rich Sequence/genetics , Genes , Humans , Mice
10.
Genome Biol ; 7(2): R14, 2006.
Article in English | MEDLINE | ID: mdl-16507170

ABSTRACT

BACKGROUND: Simple sequence repeats (SSRs) in DNA have been traditionally thought of as functionally unimportant and have been studied mainly as genetic markers. A recent handful of studies have shown, however, that SSRs in different positions of a gene can play important roles in determining protein function, genetic development, and regulation of gene expression. We have performed a detailed comparative study of the distribution of SSRs in the sequenced genomes of Arabidopsis thaliana and rice. RESULTS: SSRs in different genic regions - 5'untranslated region (UTR), 3'UTR, exon, and intron - show distinct patterns of distribution both within and between the two genomes. Especially notable is the much higher density of SSRs in 5'UTRs compared to the other regions and a strong affinity towards trinucleotide repeats in these regions for both rice and Arabidopsis. On a genomic level, mononucleotide repeats are the most prevalent type of SSRs in Arabidopsis and trinucleotide repeats are the most prevalent type in rice. Both plants have the same most common mononucleotide (A/T) and dinucleotide (AT and AG) repeats, but have little in common for the other types of repeats. CONCLUSION: Our work provides insight into the evolution and distribution of SSRs in the two sequenced model plant genomes of monocots and dicots. Our analyses reveal that the distributions of SSRs appear highly non-random and vary a great deal in different regions of the genes in the genomes.


Subject(s)
Arabidopsis/genetics , Genome, Plant , Oryza/genetics , Repetitive Sequences, Amino Acid , 5' Untranslated Regions/genetics , Arabidopsis Proteins/genetics , Base Pairing , Plant Proteins/genetics , Trinucleotide Repeats/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...