Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Trends Ecol Evol ; 26(1): 10-6, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21126797

ABSTRACT

This review describes outcomes of a 2010 horizon-scanning exercise building upon the first exercise conducted in 2009. The aim of both horizon scans was to identify emerging issues that could have substantial impacts on the conservation of biological diversity, and to do so sufficiently early to encourage policy-relevant, practical research on those issues. Our group included professional horizon scanners and researchers affiliated with universities and non- and inter-governmental organizations, including specialists on topics such as invasive species, wildlife diseases and coral reefs. We identified 15 nascent issues, including new greenhouse gases, genetic techniques to eradicate mosquitoes, milk consumption in Asia and societal pessimism.


Subject(s)
Conservation of Natural Resources/trends , Animals , Climate Change , Ecosystem , Environmental Pollution , Food , Humans , Industry
3.
Oecologia ; 120(4): 632-640, 1999 Sep.
Article in English | MEDLINE | ID: mdl-28308315

ABSTRACT

Blossey and Nötzold (1995) recently hypothesised that the increased vigour of certain invasive plant species has been at the expense of defences against natural enemies. A prediction of their evolution of increased competitive ability (EICA) hypothesis is that invasive genotypes are relatively poorly defended. We tested this prediction with herbivore bioassays and with direct quantification of plant secondary metabolites comparing non-indigenous genotypes of Lythrum salicaria L. (purple loosestrife) with indigenous forms. The herbivore bioassays revealed no significant intra-specific variation in herbivore resistance between indigenous and non-indigenous hosts. The phenolic content of L. salicaria leaves was significantly higher in indigenous genotypes, as predicted by the EICA hypothesis. The average phenolic content of leaves (regardless of their origin) was, however, low, implying that the role of plant phenolics in purple loosestrife anti-herbivore defence is probably limited. It is suggested that the EICA hypothesis, as tested in the current study, does not explain the increased vigour of L. salicaria in non-indigenous habitats.

4.
Oecologia ; 103(2): 196-202, 1995 Aug.
Article in English | MEDLINE | ID: mdl-28306773

ABSTRACT

We studied the spread of a small leaf-mining moth [Phyllonorycter leucographella (Zeller), Gracillariidae] after its accidental introduction into the British Isles. At large geographical scales, previous work had shown the spread to be well described by a travelling weve of constant velocity. Here, we report the pattern of spread at scales of 1 km2. By locating all bushes of the insect's foodplant (Pyracantha spp.) within 1-km2 quadrats, the precise pattern of colonisation at finer spatial scales could be established. Where the 1-km2 site was colonised by moths from the main advancing front, no spatial pattern in the order that bushes were infested was found. If the source of colonisation was a single or small group of infested plants within the site, there was some evidence that nearby plants were colonised first. We found no evidence of population turnover after colonisation. We interpret the results in terms of a two-stage model of invasion that produces different patterns at small and large geographical scales.

5.
Oecologia ; 102(1): 31-36, 1995 Apr.
Article in English | MEDLINE | ID: mdl-28306804

ABSTRACT

We tested for the existence of latitudinal gradients in the body sizes of butterflies in North America, Europe, Australia and the Afrotropics. We initially compared body sizes (measured as male forewing length) of all butterflies found in 5° latitudinal bands in each region, and then evaluated the relationship between body size and latitude statistically using the latitudinal midpoint of each species' distribution. Trends were examined for species in all butterfly families together and for each family separately. We found that gradients in body sizes were inconsistent in different geographical regions and butterfly families; in some cases species were larger towards the tropics, in some they were smaller, and in other cases there were no relationships. Most of the gradients, when they existed, reflected between-family effects arising from changes in the relative numbers of species in each family across regions. We conclude that general ecological explanations for geographical trends in butterfly body sizes are inappropriate, and gradients largely reflect historical patterns of speciation within and between taxa in each biogeographical realm. Thus, the robustness of body size gradients found in other insect groups should be confirmed in future studies by including more than one geographical region whenever possible.

6.
Oecologia ; 95(2): 171-178, 1993 Aug.
Article in English | MEDLINE | ID: mdl-28312939

ABSTRACT

Snails and earthworms affected the dynamics of a simple, three-species plant community, in the Ecotron controlled environment facility. Earthworms enhanced the establishment, growth and cover of the legume Trifolium dubium, both via the soil and interactions with other plant species. Worms increased soil phosphates, increased root nodulation in T. dubium, and enabled T. dubium seedlings to establish in the presence of grass (Poa annua) litter, by increasing soil heterogeneity. Worms also buried the seeds of Poa annua and Senecio vulgaris, reducing the germination of new seedlings. Snails reduced nitrogen-fixing Trifolium dubium and increased cover of plant litter, thereby reducing ammonia-nitrogen concentrations in the soil. These effects and their interactions demonstrate that the detritivore food chain, and earthworms in particular, cannot be ignored if we are to understand the spatial and temporal dynamics of plant communities.

7.
Oecologia ; 95(1): 30-37, 1993 Mar.
Article in English | MEDLINE | ID: mdl-28313308

ABSTRACT

Using published distributions of 65 species from the British Isles and northern Europe, we show that ant assemblages change with latitude in two ways. First, as commonly found for many types of organisms, the number of ant species decreased significantly with increasing latitude. For Ireland and Great Britain, species richness also increased significantly with region area. Second, although rarely demonstrated for ectotherms, the body size of ant species, as measured by worker length, increased significantly with increasing latitude. We found that this body-size pattern existed in the subfamily Formicinae and, to a lesser extent, in the Myrmicinae, which together comprised 95% of the ant species in our study area. There was a trend for formicines to increase in size with latitude faster than myrmicines. We also show that the pattern of increasing body size was due primarily to the ranges of ant species shifting to higher latitudes as their body sizes increased, with larger formicines becoming less represented at southerly latitudes and larger myrmicines becoming more represented at northerly latitudes. We conclude by discussing five potential mechanisms for generating the observed body-size patterns: the heat-conservation hypothesis, two hypotheses concerning phylogenetic history, the migration-ability hypothesis, and the starvation-resistance hypothesis.

8.
Oecologia ; 83(4): 535-540, 1990 Jul.
Article in English | MEDLINE | ID: mdl-28313189

ABSTRACT

We use field and laboratory experiments to determine whether Hyphydrus ovatus, a predatory aquatic beetle, is food limited, and whether any food shortage results from depletion of prey by these predators (intrinsic food shortage) or is independent of predation by these beetles (extrinsic food shortage). In the laboratory, differences in feeding rate influence body fat content, thus making fat content a useful index of recent feeding history. H. ovatus collected during the breeding season have fat contents significantly greater than those of H. ovatus starved for 25 days, but not significantly different from those of H. ovatus fed ad libitum for 25 days, indicating that natural feeding rates are near the maximum possible. H. ovatus confined at a density 60 times greater than natural show reduced fat content and feeding rate relative to natural, indicating that at very high densities H. ovatus is capable of depleting its prey. Addition of supplemental natural prey (primarily Cladocera) to experimental enclosures resulted in an order of magnitude increase in prey availability, and a significant increase in fat content and feeding rate of confined H. ovatus. Adults of this species do not appear to be food limited during the breeding season, and extraordinarily high densities of adults seem to be necessary to produce intrinsic food shortage. These results suggest that feeding links between H. ovatus an its principal prey do not have major effects on population dynamics under typical field conditions, and call into question the assumption that closely coupled predator-prey interactions are the sole explanation for observed food-web patterns.

SELECTION OF CITATIONS
SEARCH DETAIL
...