Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Burns Wounds ; 7: e3, 2007 Aug 24.
Article in English | MEDLINE | ID: mdl-18091980

ABSTRACT

OBJECTIVE: Human defensins and cathelicidins are a family of cationic antimicrobial peptides (AMPs), which play multiple roles in both innate and adaptive immune systems. They have direct antimicrobial activity against several microorganisms including burn pathogens. The majority of components of innate and adaptive immunity either express naturally occurring defensins or are otherwise chemoattracted or functionally affected by them. They also enhance adaptive immunity and wound healing and alter antibody production. All mechanisms to explain multiple functions of AMPs are not clearly understood. Prior studies to localize defensins in normal and burned skin using deconvolution fluorescence scanning microscopy indicate localization of defensins in the nucleus, perinuclear regions, and cytoplasm. The objective of this study is to further confirm the identification of HBD-1 in the nucleus by deconvolution microscopic studies involving image reconstruction and wire frame modeling. RESULTS: Our study demonstrated the presence of intranuclear HBD-1 in keratinocytes throughout the stratum spinosum by costaining with the nuclear probe DAPI. In addition, HBD-1 sequence does show some homology with known cationic nuclear localization signal sequences. CONCLUSION: To our knowledge, this is the first report to localize HBD-1 in the nuclear region, suggesting a role for this peptide in gene expression and providing new data that may help determine mechanisms of defensin functions.

2.
J Burns Wounds ; 5: e10, 2007 Jan 10.
Article in English | MEDLINE | ID: mdl-17235375

ABSTRACT

OBJECTIVE: Human beta-defensin (HBD) and the complement system are two important innate immune mechanisms active against a broad range of burn and wound pathogens. However, excessive or uncontrolled complement activation, following thermal injury, contributes to tissue damage. Previous studies from our laboratory suggested a decreased expression of HBD-2 in burn wounds and its absence in burn blister fluid. Prior studies have demonstrated that human neutrophil peptide can bind to the C1q component of the complement system and prevent complement activation. The objective of this study was to determine whether HBD-1 and HBD-2 can also bind to the C1q component and modulate complement activity. METHODS: The binding efficiency of HBD-1 and HBD-2 to the C1q component was determined by utilizing dot blot hybridization. The effect of HBD-2 on the activation of the complement system by the classical and alternative pathways was determined by CH50 and AP50 assays. In addition, the ability of HBD-1 and HBD-2 to inhibit C1q activity was predicted by a comparison with known C1q inhibitor peptide 2J in a DNAStar computer modeling study. RESULTS: C1q binding to HBD-2 was strong, whereas C1q binding to HBD-1 was weak. HBD-2 inhibits the classical pathway significantly without affecting the alternative pathway. In addition, a computer modeling study also revealed structural homology of HBD-2 with known C1q inhibitory sequences of HBD-2. CONCLUSION: HBD-2 inhibits the classical pathway. The replacement of missing defensin, a natural inhibitor of the complement system, may have a dual protective role not only as an antimicrobial agent but also in providing protection against uncontrolled activation of the complement system.

3.
Chest ; 121(3): 722-31, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11888952

ABSTRACT

STUDY OBJECTIVES: To exclude genetic linkage between the beta(2)-adrenoceptor gene and asthma, allergy, and methacholine airway hyperresponsiveness. DESIGN: The current study used six distinct intragene markers within the beta(2)-adrenoceptor gene, and evaluated genetic linkage between the beta(2)-adrenoceptor and asthma, allergy, or methacholine airway hyperresponsiveness in eight multiplex families. PATIENTS: Forty-nine members of eight multiplex families with a high incidence of asthma. INTERVENTIONS: Phenotypes were characterized by history, physical examination, skin testing, pulmonary function tests, and methacholine inhalational challenge. Genetic loci were identified using restriction fragment length polymorphisms, denaturing gradient gel electrophoresis, and restriction enzyme digest of polymerase chain reaction-amplified fragments of the beta(2)-adrenoceptor gene. MEASUREMENTS AND RESULTS: Nonparametric analysis using computer analysis software found no evidence for linkage between these markers within the beta(2)-adrenoceptor gene and asthma. Parametric exclusion analysis using a dominant inheritance model resulted in large negative lod scores (- 6.74, - 19.44, and - 49.9, respectively) for tight linkage between asthma, allergy, or methacholine airway hyperresponsiveness and these polymorphic markers. CONCLUSIONS: These results indicate that asthma, allergy, and methacholine airway hyperresponsiveness are not linked to a dominant beta(2)-adrenoceptor gene with strong effect in these eight families with an inherited pattern of asthma.


Subject(s)
Asthma/genetics , Bronchial Hyperreactivity/genetics , Hypersensitivity/genetics , Receptors, Adrenergic, beta-2/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Asthma/physiopathology , Bronchial Provocation Tests , Child , Female , Genetic Linkage , Humans , Male , Middle Aged , Pedigree , Polymorphism, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...