Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Inorg Chem ; 23(1): 41-49, 2018 01.
Article in English | MEDLINE | ID: mdl-29218641

ABSTRACT

Structural variations of the well-known guanine quartet (G4) motif in nucleic acid structures, namely substitution of two guanine bases (G) by two adenine (A) nucleobases in mutual trans positions, are discussed and studied by density functional theory (DFT) methods. This work was initiated by three findings, namely (1) that GA mismatches are compatible with complementary pairing patterns in duplex-DNA structures and can, in principle, be extended to quartet structures, (2) that GA pairs can come in several variations, including with a N1 protonated adeninium moiety (AH), and (3) that cross-linking of the major donor sites of purine nucleobases (N1 and N7) by transition metal ions of linear coordination geometries produces planar purine quartets, as demonstrated by some of us in the past. Here, possible structures of mixed AGAG quartets both in the presence of protons and alkali metal ions are discussed, and in particular, the existence of a putative four-purine, two-metal motif.


Subject(s)
Adenine/chemistry , Cations/chemistry , Guanine/chemistry , Metals, Alkali/chemistry , Protons , Base Pairing , Base Sequence , G-Quadruplexes , Hydrogen Bonding , Models, Chemical , Quantum Theory
2.
Dalton Trans ; (48): 10774-86, 2009 Dec 28.
Article in English | MEDLINE | ID: mdl-20023907

ABSTRACT

The role of the NH(3) ligands in the highly successful antitumour agents cisplatin and carboplatin is not fully understood. Suggestions that the ammonia ligands are involved in target recognition through hydrogen bond formation, e.g. with guanine-O6, have been questioned. Here, we review the roles and functions of NH(3) ligands of cis-PtCl(2)(NH(3))(2) and likewise of its trans-isomer in complexes with model nucleobases as well as other N-heterocyclic ligands. Specifically, their roles in hydrogen bonding interactions with nucleobases as well as anions, the influence on acid-base properties of co-ligands, their involvement in condensation reactions, as well as a variety of displacement reactions will be examined. As a result, it can be stated that the ammonia ligands in cis- and trans-Pt(II)(NH(3))(2) entities display additional features to those generally discussed in the last four decades since the discovery of the antitumour activity of cisplatin.


Subject(s)
Ammonia/chemistry , Antineoplastic Agents/chemistry , Coordination Complexes/chemistry , Ligands , Platinum/chemistry , Carboplatin/chemistry , Cisplatin/chemistry , Crystallography, X-Ray , Hydrogen Bonding , Molecular Conformation
3.
Inorg Chem ; 46(10): 4036-43, 2007 May 14.
Article in English | MEDLINE | ID: mdl-17439115

ABSTRACT

Aqua ligands in mixed aqua/nucleobase metal complexes are potential sites of acid-base catalysis and/or, when present as hydroxo ligands, can directly be involved in hydrolysis reactions. pKa values of close to 7 are consequently of particular interest and potential significance. Here we report on the differential acidity of aqua complexes in model nucleobase (nb) complexes of cis- and trans-[Pt(NH3)2 (nb)(H2O)]n+ and discuss reasons as to why the nb in cis complexes influences the pKa (pKa 4.8-7.0), whereas in trans complexes the pKa values are rather constant (pKa approximately 5.2-5.3). The results of DFT calculations of a series of mono(nucleobase) complexes derived from cis-Pt(NH3)2 are critically examined with regard to the role of exocyclic groups of nucleobases in stabilizing aqua/hydroxo ligands through intracomplex hydrogen bond formation. This applies in particular to the exocyclic amino groups of nucleobases, for which gas-phase calculations suggest that they may act as H bond acceptors in certain cases, yet in the condensed phase this appears not to be the case.

4.
J Inorg Biochem ; 100(5-6): 980-91, 2006 May.
Article in English | MEDLINE | ID: mdl-16624413

ABSTRACT

Despite their structural similarity, [Pt(dien)(1-MeC-N3)](2+) (1), [Pd(dien)(1-MeC-N3)](2+) (2), and [Pt(NH(3))(3)(1-MeC-N3)](2+) (3) (with dien=diethylenetriamine and 1-MeC=neutral 1-methylcytosine) behave in part markedly different at strongly alkaline pH (12-13) and at room temperature. While 1 and 2, yet not 3 show linkage isomerization from N3 to N4, deamination of the cytosine nucleobase to 1-methyluracilate occurs with 1 and 3, yet not with 2. Pathways leading to N3,N4-diplatinated 1-MeC(-) complexes (1-MeC(-)=1-methylcytosine, deprotonated at exocyclic amino group N4) have been studied at high pH by starting from 1 and 3, respectively, and adding (dien)Pt(II). It appears that initial migration of the metal entity from N3 to N4, followed by binding of the second metal to the available N3 site, is favored over sequential coordination to N3 and then N4. X-ray crystal data of 1-3 density functional theory (DFT) calculations, and NMR ((1)H, (195)Pt) data are presented.


Subject(s)
Cytosine/analogs & derivatives , Palladium/chemistry , Platinum Compounds/chemistry , Crystallography, X-Ray , Cytosine/chemistry , Deamination , Isomerism , Magnetic Resonance Spectroscopy , Models, Molecular
6.
Chemistry ; 11(21): 6246-53, 2005 Oct 21.
Article in English | MEDLINE | ID: mdl-16075445

ABSTRACT

To evaluate the possibility of introducing azole nucleosides as building blocks for metal-mediated base pairs in artificial oligonucleotides, imidazole nucleoside, 1,2,4-triazole nucleoside and tetrazole nucleoside have been synthesized and characterized. The X-ray crystal structures of p-toluoyl-protected 1,2,4-triazole and tetrazole nucleosides are reported. Contrary to the situation primarily found for deoxyribonucleosides, the sugar moieties adopt C3'-endo conformations. The acidity of the beta nucleosides increases with increasing number of nitrogen ring atoms, giving pKa values of 6.01 +/- 0.05, 1.32+/-0.05 and <-3, respectively. This decrease in basicity results in a decreasing ability to form 2:1 complexes with linearly coordinating metal ions such as Ag+ and Hg2+. In all cases, the Ag+ complexes are of higher stability than the corresponding Hg2+ complexes. Whereas imidazole nucleoside forms highly stable 2:1 complexes with both metal ions (estimated log beta2 values of >10), only Ag+ is able to reach this coordination pattern in the case of triazole nucleoside (log beta2 = 4.3 +/- 0.1). Tetrazole nucleoside does not form 2:1 complexes at all under the experimental conditions used. These data suggest that imidazole nucleoside, and to a lesser extent 1,2,4-triazole nucleoside, are likely candidates for successful incorporation as ligands in oligonucleotides based on metal-mediated base pairs. DFT calculations further corroborate this idea, providing model complexes for such base pairs with glycosidic bond distances (10.8-11.0 Angstroms) resembling those in idealized B-DNA (10.85 Angstroms).


Subject(s)
Azoles/chemistry , Metals/chemistry , Nucleosides/chemistry , Crystallography, X-Ray , Hydrogen-Ion Concentration , Indicators and Reagents , Ligands , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Conformation
7.
Chemistry ; 10(4): 1046-57, 2004 Feb 20.
Article in English | MEDLINE | ID: mdl-14978832

ABSTRACT

The degree of acidification of the exocyclic N6 amino group of the model nucleobase 9-methyladenine (9MeA) in relation to the number and site(s) of Pt(II) binding has been studied in detail. It is found that twofold Pt(II) binding to N1 and N7 lowers the pK(a) value from 16.7 in the free base to 12-8. The lowest pK(a) values are observed when the resulting N6H(-) amide group is intramolecularly stabilized by an H-bond donor such as the N6H(2) group of a suitably positioned second 9MeA ligand. Deprotonation of the N6 amino group facilitates Pt migration from N1 to N6, and subsequent reprotonation of the N1 position yields a twofold N7,N6-metalated form of the rare imino tautomer of 9MeA, which has a pK(a) value of 5.03. These findings demonstrate a principle that is of potential relevance to the topic of "shifted pK(a)" values of adenine nucleobases, which is believed to be important with regard to acid-base catalysis of RNAs at physiological pH values. The principle states that a nucleobase pK(a) value can be sufficiently lowered to reach near-neutral values and that the pK(a) value of the protonated base does not necessarily have to be increased to accomplish this effect.

SELECTION OF CITATIONS
SEARCH DETAIL
...