Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Stem Cell Rev Rep ; 20(3): 845-851, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38183535

ABSTRACT

The mammal retina does not have the capacity to regenerate throughout life, although some stem and progenitor cells persist in the adult retina and might retain multipotentiality, as previously described in many tissues. In this work we demonstrate the presence of a small lineage- Sca-1+ cell population in the adult mouse retina which expresses functional TLR2 receptors as in vitro challenge with the pure TLR2 agonist Pam3CSK4 increases cell number and upregulates TLR2. Therefore, this population could be of interest in neuroregeneration studies to elucidate its role in these processes.


Subject(s)
Stem Cells , Toll-Like Receptor 2 , Mice , Animals , Toll-Like Receptor 2/genetics , Cell Differentiation/physiology , Retina , Mammals
2.
Cell Death Dis ; 14(11): 711, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37914688

ABSTRACT

Central areolar choroidal dystrophy is an inherited disorder characterized by progressive choriocapillaris atrophy and retinal degeneration and is usually associated with mutations in the PRPH2 gene. We aimed to generate and characterize a mouse model with the p.Arg195Leu mutation previously described in patients. Heterozygous (Prph2WT/KI) and homozygous (Prph2KI/KI) mice were generated using the CRISPR/Cas9 system to introduce the p.Arg195Leu mutation. Retinal function was assessed by electroretinography and optomotor tests at 1, 3, 6, 9, 12, and 20 months of age. The structural integrity of the retinas was evaluated at the same ages using optical coherence tomography. Immunofluorescence and transmission electron microscopy images of the retina were also analyzed. Genetic sequencing confirmed that both Prph2WT/KI and Prph2KI/KI mice presented the p.Arg195Leu mutation. A progressive loss of retinal function was found in both mutant groups, with significantly reduced visual acuity from 3 months of age in Prph2KI/KI mice and from 6 months of age in Prph2WT/KI mice. Decreased amplitudes in the electroretinography responses were observed from 1 month of age in Prph2KI/KI mice and from 6 months of age in Prph2WT/KI mice. Morphological analysis of the retinas correlated with functional findings, showing a progressive decrease in retinal thickness of mutant mice, with earlier and more severe changes in the homozygous mutant mice. We corroborated the alteration of the outer segment structure, and we found changes in the synaptic connectivity in the outer plexiform layer as well as gliosis and signs of microglial activation. The new Prph2WT/KI and Prph2KI/KI murine models show a pattern of retinal degeneration similar to that described in human patients with central areolar choroidal dystrophy and appear to be good models to study the mechanisms involved in the onset and progression of the disease, as well as to test the efficacy of new therapeutic strategies.


Subject(s)
Retinal Degeneration , Animals , Humans , Infant , Mice , Electroretinography , Microglia , Mutation/genetics , Peripherins/genetics , Retina , Retinal Degeneration/genetics
3.
Int J Mol Sci ; 24(22)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38003256

ABSTRACT

Ischemia is the main cause of cell death in retinal diseases such as vascular occlusions, diabetic retinopathy, glaucoma, or retinopathy of prematurity. Although excitotoxicity is considered the primary mechanism of cell death during an ischemic event, antagonists of glutamatergic receptors have been unsuccessful in clinical trials with patients suffering ischemia or stroke. Our main purpose was to analyze if the transient receptor potential channel 7 (TRPM7) could contribute to retinal dysfunction in retinal pathologies associated with ischemia. By using an experimental model of acute retinal ischemia, we analyzed the changes in retinal function by electroretinography and the changes in retinal morphology by optical coherence tomography (OCT) and OCT-angiography (OCTA). Immunohistochemistry was performed to assess the pattern of TRPM7 and its expression level in the retina. Our results show that ischemia elicited a decrease in retinal responsiveness to light stimuli along with reactive gliosis and a significant increase in the expression of TRPM7 in Müller cells. TRPM7 could emerge as a new drug target to be explored in retinal pathologies associated with ischemia.


Subject(s)
Retinal Diseases , TRPM Cation Channels , Animals , Humans , Infant, Newborn , Mice , Ischemia/pathology , Protein Serine-Threonine Kinases/metabolism , Reperfusion/adverse effects , Retina/metabolism , Retinal Diseases/metabolism , Retinal Vessels/metabolism , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism
5.
Transl Neurodegener ; 12(1): 17, 2023 04 03.
Article in English | MEDLINE | ID: mdl-37013599

ABSTRACT

BACKGROUND: The main clinical symptoms characteristic of Parkinson's disease (PD) are bradykinesia, tremor, and other motor deficits. However, non-motor symptoms, such as visual disturbances, can be identified at early stages of the disease. One of these symptoms is the impairment of visual motion perception. Hence, we sought to determine if the starburst amacrine cells, which are the main cellular type involved in motion direction selectivity, are degenerated in PD and if the dopaminergic system is related to this degeneration. METHODS: Human eyes from control (n = 10) and PD (n = 9) donors were available for this study. Using immunohistochemistry and confocal microscopy, we quantified starburst amacrine cell density (choline acetyltransferase [ChAT]-positive cells) and the relationship between these cells and dopaminergic amacrine cells (tyrosine hydroxylase-positive cells and vesicular monoamine transporter-2-positive presynapses) in cross-sections and wholemount retinas. RESULTS: First, we found two different ChAT amacrine populations in the human retina that presented different ChAT immunoreactivity intensity and different expression of calcium-binding proteins. Both populations are affected in PD and their density is reduced compared to controls. Also, we report, for the first time, synaptic contacts between dopaminergic amacrine cells and ChAT-positive cells in the human retina. We found that, in PD retinas, there is a reduction of the dopaminergic synaptic contacts into ChAT cells. CONCLUSIONS: Taken together, this work indicates degeneration of starburst amacrine cells in PD related to dopaminergic degeneration and that dopaminergic amacrine cells could modulate the function of starburst amacrine cells. Since motion perception circuitries are affected in PD, their assessment using visual tests could provide new insights into the diagnosis of PD.


Subject(s)
Motion Perception , Parkinson Disease , Humans , Amacrine Cells/metabolism , Parkinson Disease/metabolism , Retina , Dopaminergic Neurons
6.
Eye Vis (Lond) ; 10(1): 12, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36855168

ABSTRACT

BACKGROUND: Different ocular alterations have been described in patients with coronavirus disease 2019 (COVID-19). Our aim was to determine whether COVID-19 affected retinal cells and establish correlations with clinical parameters. METHODS: Retinal sections and flat-mount retinas from human donors with COVID-19 (n = 16) and controls (n = 15) were immunostained. The location of angiotensin-converting enzyme 2 (ACE2) and the morphology of microglial cells, Müller cells, astrocytes, and photoreceptors were analyzed by confocal microscopy. Microglial quantification and the area occupied by them were measured. Correlations among retinal and clinical parameters were calculated. RESULTS: ACE2 was mainly located in the Müller cells, outer segment of cones and retinal pigment epithelium. Cell bodies of Müller cells in COVID-19 group showed greater staining of ACE2 and cellular retinaldehyde-binding protein (CRALBP). The 81.3% of COVID-19 patients presented disorganization of honeycomb-like pattern formed by Müller cells. Gliosis was detected in 56.3% of COVID-19 patients compared to controls (40%) as well as epiretinal membranes (ERMs) or astrocytes protruding (50%). Activated or ameboid-shape microglia was the main sign in the COVID-19 group (93.8%). Microglial migration towards the vessels was greater in the COVID-19 retinas (P < 0.05) and the area occupied by microglia was also reduced (P < 0.01) compared to control group. Cone degeneration was more severe in the COVID-19 group. Duration of the disease, age and respiratory failure were the most relevant clinical data in relation with retinal degeneration. CONCLUSIONS: The retinas of patients with COVID-19 exhibit glial activation and neuronal alterations, mostly related to the inflammation, hypoxic conditions, and age.

7.
Int J Mol Sci ; 23(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36499084

ABSTRACT

The purinergic receptor P2X7 (P2X7R) is implicated in all neurodegenerative diseases of the central nervous system. It is also involved in the retinal degeneration associated with glaucoma, age-related macular degeneration, and diabetic retinopathy, and its overexpression in the retina is evident in these disorders. Retinitis pigmentosa is a progressive degenerative disease that ultimately leads to blindness. Here, we investigated the expression of P2X7R during disease progression in the rd10 mouse model of RP. As the purinergic receptor P2X4 is widely co-expressed with P2X7R, we also studied its expression in the retina of rd10 mice. The expression of P2X7R and P2X4R was examined by immunohistochemistry, flow cytometry, and western blotting. In addition, we analyzed retinal functionality by electroretinographic recordings of visual responses and optomotor tests and retinal morphology. We found that the expression of P2X7R and P2X4R increased in rd10 mice concomitant with disease progression, but with different cellular localization. Our findings suggest that P2X7R and P2X4R might play an important role in RP progression, which should be further analyzed for the pharmacological treatment of inherited retinal dystrophies.


Subject(s)
Receptors, Purinergic P2X4 , Receptors, Purinergic P2X7 , Retinitis Pigmentosa , Animals , Mice , Disease Models, Animal , Disease Progression , Electroretinography , Mice, Inbred C57BL , Receptors, Purinergic P2X7/genetics , Retinitis Pigmentosa/genetics , Receptors, Purinergic P2X4/genetics
8.
Front Neuroanat ; 16: 984052, 2022.
Article in English | MEDLINE | ID: mdl-36225228

ABSTRACT

Multiple gene mutations have been associated with inherited retinal dystrophies (IRDs). Despite the spectrum of phenotypes caused by the distinct mutations, IRDs display common physiopathology features. Cell death is accompanied by inflammation and oxidative stress. The vertebrate retina has several attributes that make this tissue vulnerable to oxidative and nitrosative imbalance. The high energy demands and active metabolism in retinal cells, as well as their continuous exposure to high oxygen levels and light-induced stress, reveal the importance of tightly regulated homeostatic processes to maintain retinal function, which are compromised in pathological conditions. In addition, the subsequent microglial activation and gliosis, which triggers the secretion of pro-inflammatory cytokines, chemokines, trophic factors, and other molecules, further worsen the degenerative process. As the disease evolves, retinal cells change their morphology and function. In disease stages where photoreceptors are lost, the remaining neurons of the retina to preserve their function seek out for new synaptic partners, which leads to a cascade of morphological alterations in retinal cells that results in a complete remodeling of the tissue. In this review, we describe important molecular and morphological changes in retinal cells that occur in response to oxidative stress and the inflammatory processes underlying IRDs.

9.
Biomed Pharmacother ; 149: 112911, 2022 May.
Article in English | MEDLINE | ID: mdl-36068774

ABSTRACT

This review focuses on retina degeneration occurring during glaucoma, age-related macular degeneration (AMD), diabetic retinopathy (DR), and retinitis pigmentosa (RP), and on the potential therapeutic use of triads of repositioned medicines, addressed to distinct but complementary targets, to prevent, delay or stop retina cell death. Although myriad pathogenic mechanisms have been implicated in these disorders, common signaling pathways leading to apoptotic cell death to all of them, and to all neurodegenerative diseases are (i) calcium dyshomeostasis/excitotoxicity; (ii) oxidative stress/mitochondrial dysfunction, and (iii) neuroinflammation/P2X7 receptor activation. From a therapeutic point of view, it is relevant to consider the multitarget approach based on the use of combined medicines acting on complementary pathogenic mechanisms that has been highly successful in the treatment of chronic diseases such as cancer, AIDS, pain, hypertension, Parkinson's disease, cardiac failure, depression, or the epilepsies as the basic mechanisms of cell death do not differ between the different CNS degenerative diseases. We suggest the multi-target therapy approach could be more effective compared with single-drug treatments. Used at doses lower than standard, these triads may also be safer and more efficient. After the establishment of a proof-of-concept in animal models of retinal degeneration, potential successful preclinical trials of such combinations may eventually drive to test this concept in clinical trials in patients, first to evaluate the safety and efficacy of the drug combinations in humans and then their therapeutic advantages, if any, seeking the prevention and/or the delay of retina degeneration and blindness.


Subject(s)
Diabetic Retinopathy , Neurodegenerative Diseases , Retinal Degeneration , Animals , Humans , Neurodegenerative Diseases/drug therapy , Neuroprotection , Retina/metabolism , Retinal Degeneration/drug therapy
10.
Antioxidants (Basel) ; 11(6)2022 May 30.
Article in English | MEDLINE | ID: mdl-35739983

ABSTRACT

Inherited retinal dystrophies (IRDs) are a large group of genetically and clinically heterogeneous diseases characterized by the progressive degeneration of the retina, ultimately leading to loss of visual function. Oxidative stress and inflammation play fundamental roles in the physiopathology of these diseases. Photoreceptor cell death induces an inflammatory state in the retina. The activation of several molecular pathways triggers different cellular responses to injury, including the activation of microglia to eliminate debris and recruit inflammatory cells from circulation. Therapeutical options for IRDs are currently limited, although a small number of patients have been successfully treated by gene therapy. Many other therapeutic strategies are being pursued to mitigate the deleterious effects of IRDs associated with oxidative metabolism and/or inflammation, including inhibiting reactive oxygen species' accumulation and inflammatory responses, and blocking autophagy. Several compounds are being tested in clinical trials, generating great expectations for their implementation. The present review discusses the main death mechanisms that occur in IRDs and the latest therapies that are under investigation.

11.
Invest Ophthalmol Vis Sci ; 63(5): 2, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35503230

ABSTRACT

Purpose: To assess the changes in retinal morphology in a rat model of chronic glaucoma induced by ocular hypertension. Methods: Intraocular pressure (IOP) was surgically increased through weekly injections of sodium hyaluronate (HYA) in the anterior eye chamber of the left eye of male Wistar rats, whereas the right eyes were sham operated (salt solution). During the 10-week experimental period, IOP was measured weekly with a rebound tonometer. Retinal cryosections were prepared for histological/immunohistochemical analysis and morphometry. Results: IOP was higher in HYA-treated eyes than in sham-operated eyes along the 10-week period, which was significant from the fourth to the nineth week. Ocular hypertension in HYA-treated eyes was associated with morphologic and morphometric changes in bipolar cells, ON-OFF direction-selective ganglion cells, ON/OFF starburst amacrine cells, and inner plexiform layer sublamina. Conclusions: Serial HYA treatment in the rat anterior eye chamber results in mild-to-moderate elevated and sustained IOP and ganglion cell death, which mimics most human open-angle glaucoma hallmarks. The reduced number of direction-selective ganglion cells and starburst amacrine cells accompanied by a deteriorated ON/OFF plexus in this glaucoma model could lend insight to the abnormalities in motion perception observed in patients with glaucoma.


Subject(s)
Glaucoma, Open-Angle , Glaucoma , Ocular Hypertension , Animals , Disease Models, Animal , Glaucoma, Open-Angle/metabolism , Humans , Hyaluronic Acid/metabolism , Intraocular Pressure , Male , Rats , Rats, Wistar , Retinal Ganglion Cells/metabolism
12.
Front Neuroanat ; 16: 858073, 2022.
Article in English | MEDLINE | ID: mdl-35493706

ABSTRACT

Purpose: Retinitis pigmentosa is primarily characterized by a massive photoreceptor loss. But a global retinal remodeling occurs in later stages of the disease. At that phase, glial cells and retinal vasculature are also strongly affected. The main aim of the present work is to assess if the bile acid Tauroursodeoxicholic acid (TUDCA), which has a demonstrated neuroprotective effect in numerous neurodegenerative diseases, is able to prevent glial and vascular degeneration in the P23H rat retina. Methods: Homozygous P23H (line 3) animals were injected weekly with a TUDCA (500 mg/kg, i.p.) or vehicle solution, from the postnatal day (P) 21 to P120. Sprague-Dawley rats (SD) were used as control. Retinal cross-sections and wholemounts were immunostained using different glial and vascular markers and visualized with confocal microscopy. Retinal blood vessels were stained with nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase histochemistry and retinal vascular networks were drawn by hand using a camera lucida. Results: At P120, the photoreceptor degeneration observed in P23H rats was accompanied by a reduction in the vascular network density and complexity at the deep capillary plexus. In addition, astrocytes showed gliotic features and the outer processes of Müller cells displayed an aberrant distribution in ring-shaped structures. When treated with TUDCA, P23H rats displayed better-preserved vessels and capillary loops in the deep capillary plexus which are associated with the partial preservation of photoreceptors. TUDCA treatment also increased the number of astrocytes and reduced the presence of Müller cell process clusters in the outer retina. Conclusion: This work suggests that, besides its neuroprotective effect on photoreceptor cells, TUDCA treatment also protects from vascular and glial degeneration, a fact that encourages the use of TUDCA as a powerful therapy for neurodegenerative diseases.

14.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Article in English | MEDLINE | ID: mdl-34667124

ABSTRACT

A high-fat diet (HFD) can induce hyperglycemia and metabolic syndromes that, in turn, can trigger visual impairment. To evaluate the acute effects of HFD feeding on retinal degeneration, we assessed retinal function and morphology, inflammatory state, oxidative stress, and gut microbiome in dystrophic retinal degeneration 10 (rd10) mice, a model of retinitis pigmentosa, fed an HFD for 2 to 3 wk. Short-term HFD feeding impaired retinal responsiveness and visual acuity and enhanced photoreceptor degeneration, microglial cell activation, and Müller cell gliosis. HFD consumption also triggered the expression of inflammatory and oxidative markers in rd10 retinas. Finally, an HFD caused gut microbiome dysbiosis, increasing the abundance of potentially proinflammatory bacteria. Thus, HFD feeding drives the pathological processes of retinal degeneration by promoting oxidative stress and activating inflammatory-related pathways. Our findings suggest that consumption of an HFD could accelerate the progression of the disease in patients with retinal degenerative disorders.


Subject(s)
Diet, High-Fat/adverse effects , Retinal Degeneration/etiology , Retinitis Pigmentosa/etiology , Animals , Cell Death , Disease Models, Animal , Electroretinography , Female , Gastrointestinal Microbiome , Glucose Intolerance , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Models, Biological , Oxidative Stress , Photoreceptor Cells, Vertebrate/pathology , Retina/metabolism , Retina/pathology , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retinitis Pigmentosa/metabolism , Retinitis Pigmentosa/pathology
15.
Exp Eye Res ; 209: 108667, 2021 08.
Article in English | MEDLINE | ID: mdl-34119484

ABSTRACT

Fatty acids, and especially docosahexaenoic acid (DHA), are essential for photoreceptor cell integrity and are involved in the phototransduction cascade. In this study, we analyzed the changes in the fatty acid profile in the retina of the rd10 mouse, model of retinitis pigmentosa, in order to identify potential risk factors for retinal degeneration and possible therapeutic approaches. Fatty acids from C57BL/6J and rd10 mouse retinas were extracted with Folch's method and analyzed by gas chromatography/mass spectrometry. Changes in retinal morphology were evaluated by immunohistochemistry. The rd10 mouse retina showed a decreased number of photoreceptor rows and alterations in photoreceptor morphology compared to C57BL/6J mice. The total amount of fatty acids dropped by 29.4% in the dystrophic retinas compared to C57BL/6J retinas. A positive correlation was found between the retinal content of specific fatty acids and the number of photoreceptor rows. We found that the amount of several short-chain and long-chain saturated fatty acids, as well as monounsaturated fatty acids, decreased in the retina of rd10 mice. Moreover, the content of the n-6 polyunsaturated fatty acid arachidonic acid and the n-3 polyunsaturated DHA decreased markedly in the dystrophic retina. The fall of DHA was more pronounced, hence the n-6/n-3 ratio was significantly increased in the diseased retina. The content of specific fatty acids in the retina decreased with photoreceptor degeneration in retinitis pigmentosa mice, with a remarkable reduction in DHA and other saturated and unsaturated fatty acids. These fatty acids could be essential for photoreceptor cell viability, and they should be evaluated for the design of therapeutical strategies and nutritional supplements.


Subject(s)
Docosahexaenoic Acids/pharmacology , Fatty Acids/pharmacology , Lipidomics/methods , Retinal Rod Photoreceptor Cells/pathology , Retinitis Pigmentosa/drug therapy , Animals , Cell Death , Disease Models, Animal , Disease Progression , Female , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Retinal Rod Photoreceptor Cells/drug effects , Retinitis Pigmentosa/diagnosis
16.
Sci Rep ; 11(1): 6692, 2021 03 23.
Article in English | MEDLINE | ID: mdl-33758301

ABSTRACT

The gut microbiome is known to influence the pathogenesis and progression of neurodegenerative diseases. However, there has been relatively little focus upon the implications of the gut microbiome in retinal diseases such as retinitis pigmentosa (RP). Here, we investigated changes in gut microbiome composition linked to RP, by assessing both retinal degeneration and gut microbiome in the rd10 mouse model of RP as compared to control C57BL/6J mice. In rd10 mice, retinal responsiveness to flashlight stimuli and visual acuity were deteriorated with respect to observed in age-matched control mice. This functional decline in dystrophic animals was accompanied by photoreceptor loss, morphologic anomalies in photoreceptor cells and retinal reactive gliosis. Furthermore, 16S rRNA gene amplicon sequencing data showed a microbial gut dysbiosis with differences in alpha and beta diversity at the genera, species and amplicon sequence variants (ASV) levels between dystrophic and control mice. Remarkably, four fairly common ASV in healthy gut microbiome belonging to Rikenella spp., Muribaculaceace spp., Prevotellaceae UCG-001 spp., and Bacilli spp. were absent in the gut microbiome of retinal disease mice, while Bacteroides caecimuris was significantly enriched in mice with RP. The results indicate that retinal degenerative changes in RP are linked to relevant gut microbiome changes. The findings suggest that microbiome shifting could be considered as potential biomarker and therapeutic target for retinal degenerative diseases.


Subject(s)
Gastrointestinal Microbiome , Retinitis Pigmentosa/etiology , Animals , Biodiversity , Biomarkers , Disease Models, Animal , Disease Susceptibility , Dysbiosis , Immunohistochemistry , Metagenomics/methods , Mice , Mice, Knockout , RNA, Ribosomal, 16S , Retinal Degeneration/etiology , Retinal Degeneration/pathology , Retinitis Pigmentosa/metabolism , Retinitis Pigmentosa/pathology
17.
Ann Neurol ; 88(5): 893-906, 2020 11.
Article in English | MEDLINE | ID: mdl-32881029

ABSTRACT

OBJECTIVE: Considering the demonstrated implication of the retina in Parkinson disease (PD) pathology and the importance of dopaminergic cells in this tissue, we aimed to analyze the state of the dopaminergic amacrine cells and some of their main postsynaptic neurons in the retina of PD. METHODS: Using immunohistochemistry and confocal microscopy, we evaluated morphology, number, and synaptic connections of dopaminergic cells and their postsynaptic cells, AII amacrine and melanopsin-containing retinal ganglion cells, in control and PD eyes from human donors. RESULTS: In PD, dopaminergic amacrine cell number was reduced between 58% and 26% in different retinal regions, involving a decline in the number of synaptic contacts with AII amacrine cells (by 60%) and melanopsin cells (by 35%). Despite losing their main synaptic input, AII cells were not reduced in number, but they showed cellular alterations compromising their adequate function: (1) a loss of mitochondria inside their lobular appendages, which may indicate an energetic failure; and (2) a loss of connexin 36, suggesting alterations in the AII coupling and in visual signal transmission from the rod pathway. INTERPRETATION: The dopaminergic system impairment and the affection of the rod pathway through the AII cells may explain and be partially responsible for the reduced contrast sensitivity or electroretinographic response described in PD. Also, dopamine reduction and the loss of synaptic contacts with melanopsin cells may contribute to the melanopsin retinal ganglion cell loss previously described and to the disturbances in circadian rhythm and sleep reported in PD patients. These data support the idea that the retina reproduces brain neurodegeneration and is highly involved in PD pathology. ANN NEUROL 2020;88:893-906.


Subject(s)
Dopaminergic Neurons/pathology , Parkinson Disease/complications , Parkinson Disease/pathology , Retina/pathology , Vision Disorders/etiology , Vision Disorders/pathology , Aged , Aged, 80 and over , Amacrine Cells/pathology , Cell Count , Connexins/genetics , Contrast Sensitivity , Electroretinography , Female , Humans , Male , Mitochondria/pathology , Retinal Ganglion Cells/pathology , Rod Opsins/metabolism , Synapses/pathology , Gap Junction delta-2 Protein
18.
Invest Ophthalmol Vis Sci ; 61(10): 1, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32744596

ABSTRACT

Purpose: Retinitis pigmentosa (RP) is a blinding neurodegenerative disease of the retina that can be affected by many factors. The present study aimed to analyze the effect of different environmental light intensities in rd10 mice retina. Methods: C57BL/6J and rd10 mice were bred and housed under three different environmental light intensities: scotopic (5 lux), mesopic (50 lux), and photopic (300 lux). Visual function was studied using electroretinography and optomotor testing. The structural and morphological integrity of the retinas was evaluated by optical coherence tomography imaging and immunohistochemistry. Additionally, inflammatory processes and oxidative stress markers were analyzed by flow cytometry and western blotting. Results: When the environmental light intensity was higher, retinal function decreased in rd10 mice and was accompanied by light-dependent photoreceptor loss, followed by morphological alterations, and synaptic connectivity loss. Moreover, light-dependent retinal degeneration was accompanied by an increased number of inflammatory cells, which became more activated and phagocytic, and by an exacerbated reactive gliosis. Furthermore, light-dependent increment in oxidative stress markers in rd10 mice retina pointed to a possible mechanism for light-induced photoreceptor degeneration. Conclusions: An increase in rd10 mice housing light intensity accelerates retinal degeneration, activating cell death, oxidative stress pathways, and inflammatory cells. Lighting intensity is a key factor in the progression of retinal degeneration, and standardized lighting conditions are advisable for proper analysis and interpretation of experimental results from RP animal models, and specifically from rd10 mice. Also, it can be hypothesized that light protection could be an option to slow down retinal degeneration in some cases of RP.


Subject(s)
Inflammation/etiology , Lighting/adverse effects , Oxidative Stress/radiation effects , Radiation Injuries, Experimental/etiology , Retina/radiation effects , Retinal Degeneration/etiology , Animals , Blotting, Western , Disease Models, Animal , Electroretinography , Female , Flow Cytometry , Inflammation/physiopathology , Male , Mesopic Vision/physiology , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Night Vision/physiology , Polymerase Chain Reaction , Radiation Dosage , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/physiopathology , Retina/physiopathology , Retinal Degeneration/metabolism , Retinal Degeneration/physiopathology , Tomography, Optical Coherence , Visual Acuity/physiology , cis-trans-Isomerases/genetics
19.
Cell Physiol Biochem ; 54(1): 142-159, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32028545

ABSTRACT

BACKGROUND/AIMS: It is well established that oxidative stress and inflammation are common pathogenic features of retinal degenerative diseases. ITH12674 is a novel compound that induces the transcription factor Nrf2; in so doing, the molecule exhibits anti-inflammatory, and antioxidant properties, and affords neuroprotection in rat cortical neurons subjected to oxidative stress. We here tested the hypothesis that ITH12674 could slow the retinal degeneration that causes blindness in rd10 mice, a model of retinitis pigmentosa. METHODS: Animals were intraperitoneally treated with 1 or 10 mg/Kg ITH12674 or placebo from P16 to P30. At P30, retinal functionality and visual acuity were analyzed by electroretinography and optomotor test. By immunohistochemistry we quantified the photoreceptor rows and analyzed their morphology and connectivity. Oxidative stress and inflammatory state was studied by Western blot, and microglia reactivity was monitored by flow cytometry. The blood-brain barrier permeation of ITH12674 was evaluated using a PAMPA-BBB assay. RESULTS: In rd10 mice treated with 10 mg/Kg of the compound, the following changes were observed (with respect to placebo): (i) a decrease of vision loss with higher scotopic a- and b-waves; (ii) increased visual acuity; (iii) preservation of cone photoreceptors morphology, as well as their synaptic connectivity; (iv) reduced expression of TNF-α and NF-κB; (v) increased expression of p38 MAPK and Atg12-Atg5 complex; and (vi) decreased CD11c, MHC class II and CD169 positive cell populations. CONCLUSION: These data support the view that a Nrf2 inducer compound may arise as a new therapeutic strategy to combat retinal neurodegeneration. At present, we are chemically optimising compound ITH12674 with the focus on improving its neuroprotective potential in retinal neurodegenerative diseases.


Subject(s)
Isothiocyanates/therapeutic use , Melatonin/analogs & derivatives , NF-E2-Related Factor 2/agonists , Retinitis Pigmentosa/drug therapy , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Disease Models, Animal , Electroretinography , Female , Gene Expression Regulation/drug effects , Isothiocyanates/chemistry , Isothiocyanates/pharmacology , Male , Melatonin/chemistry , Melatonin/pharmacology , Melatonin/therapeutic use , Mice , Mice, Inbred C57BL , NF-E2-Related Factor 2/metabolism , Photoreceptor Cells/drug effects , Photoreceptor Cells/pathology , Retina/drug effects , Retina/metabolism , Retinitis Pigmentosa/metabolism , Retinitis Pigmentosa/pathology , Tumor Necrosis Factor-alpha/metabolism , Visual Acuity/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism
20.
Prog Retin Eye Res ; 77: 100828, 2020 07.
Article in English | MEDLINE | ID: mdl-31911236

ABSTRACT

Optical coherence tomography (OCT) and OCT angiography (OCTA) have been a technological breakthrough in the diagnosis, treatment, and follow-up of many retinal diseases, thanks to its resolution and its ability to inform of the retinal state in seconds, which gives relevant information about retinal degeneration. In this review, we present an immunohistochemical description of the human and mice retina and we correlate it with the OCT bands in health and pathological conditions. Here, we propose an interpretation of the four outer hyperreflective OCT bands with a correspondence to retinal histology: the first and innermost band as the external limiting membrane (ELM), the second band as the cone ellipsoid zone (EZ), the third band as the outer segment tips phagocytosed by the pigment epithelium (PhaZ), and the fourth band as the mitochondria in the basal portion of the RPE (RPEmitZ). The integrity of these bands would reflect the health of photoreceptors and retinal pigment epithelium. Moreover, we describe how the vascular plexuses vary in different regions of the healthy human and mice retina, using OCTA and immunohistochemistry. In humans, four, three, two or one plexuses can be observed depending on the distance from the fovea. Also, specific structures such as vascular loops in the intermediate capillary plexus, or spider-like structures of interconnected capillaries in the deep capillary plexus are found. In mice, three vascular plexuses occupy the whole retina, except in the most peripheral retina where only two plexuses are found. These morphological issues should be considered when assessing a pathology, as some retinal diseases are associated with structural changes in blood vessels. Therefore, the analysis of OCT bands and OCTA vascular plexuses may be complementary for the diagnosis and prognosis of retinal degenerative processes, useful to assess therapeutic approaches, and it is usually correlated to visual acuity.


Subject(s)
Fluorescein Angiography , Image Interpretation, Computer-Assisted , Retinal Degeneration/pathology , Retinal Vessels/pathology , Tomography, Optical Coherence , Animals , Humans , Nerve Fibers/pathology , Retinal Ganglion Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...