Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB Bioadv ; 1(8): 498-510, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31825015

ABSTRACT

Podocytes are key cells in maintaining the integrity of the glomerular filtration barrier and preventing albuminuria. Glycogen synthase kinase 3 (GSK3) is a multi-functional serine/threonine kinase existing as two distinct but related isoforms (α and ß). In the podocyte it has previously been reported that inhibition of the ß isoform is beneficial in attenuating a variety of glomerular disease models but loss of both isoforms is catastrophic. However, it is not known what the role of GSK3α is in these cells. We now show that GSK3α is present and dynamically modulated in podocytes. When GSK3α is transgenically knocked down specifically in the podocytes of mice it causes mild but significant albuminuria by 6-weeks of life. Its loss also does not protect in models of diabetic or Adriamycin-induced nephropathy. In vitro deletion of podocyte GSK3α causes cell death and impaired autophagic flux suggesting it is important for this key cellular process. Collectively this work shows that GSK3α is important for podocyte health and that augmenting its function may be beneficial in treating glomerular disease.

2.
Nat Commun ; 10(1): 403, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30679422

ABSTRACT

Albuminuria affects millions of people, and is an independent risk factor for kidney failure, cardiovascular morbidity and death. The key cell that prevents albuminuria is the terminally differentiated glomerular podocyte. Here we report the evolutionary importance of the enzyme Glycogen Synthase Kinase 3 (GSK3) for maintaining podocyte function in mice and the equivalent nephrocyte cell in Drosophila. Developmental deletion of both GSK3 isoforms (α and ß) in murine podocytes causes late neonatal death associated with massive albuminuria and renal failure. Similarly, silencing GSK3 in nephrocytes is developmentally lethal for this cell. Mature genetic or pharmacological podocyte/nephrocyte GSK3 inhibition is also detrimental; producing albuminuric kidney disease in mice and nephrocyte depletion in Drosophila. Mechanistically, GSK3 loss causes differentiated podocytes to re-enter the cell cycle and undergo mitotic catastrophe, modulated via the Hippo pathway but independent of Wnt-ß-catenin. This work clearly identifies GSK3 as a critical regulator of podocyte and hence kidney function.


Subject(s)
Albuminuria/metabolism , Glycogen Synthase Kinase 3/metabolism , Kidney Diseases/metabolism , Kidney/physiology , Podocytes/metabolism , Albuminuria/blood , Albuminuria/pathology , Albuminuria/urine , Animals , Cell Cycle , Cell Line , Disease Models, Animal , Drosophila , Gene Deletion , Gene Silencing , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3 beta/drug effects , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Hippo Signaling Pathway , Kaplan-Meier Estimate , Kidney/pathology , Kidney Diseases/blood , Kidney Diseases/pathology , Kidney Diseases/urine , Male , Mice , Podocytes/enzymology , Podocytes/pathology , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proteomics , Rats, Wistar , Renal Insufficiency , Verteporfin/pharmacology , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...