Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 13(6): 1547-1553, 2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35133831

ABSTRACT

Upconverting nanoparticles (UCNPs) are an emerging platform for mechanical force sensing at the nanometer scale. An outstanding challenge in realizing nanometer-scale mechano-sensitive UCNPs is maintaining a high mechanical force responsivity in conjunction with bright optical emission. This Letter reports mechano-sensing UCNPs based on the lanthanide dopants Yb3+ and Er3+, which exhibit a strong ratiometric change in emission spectra and bright emission under applied pressure. We synthesize and analyze the pressure response of five different types of nanoparticles, including cubic NaYF4 host nanoparticles and alkaline-earth host materials CaLuF, SrLuF, SrYbF, and BaLuF, all with lengths of 15 nm or less. By combining optical spectroscopy in a diamond anvil cell with single-particle brightness, we determine the noise equivalent sensitivity (GPa/√Hz) of these particles. The SrYb0.72Er0.28F@SrLuF particles exhibit an optimum noise equivalent sensitivity of 0.26 ± 0.04 GPa/√Hz. These particles present the possibility of robust nanometer-scale mechano-sensing.

2.
J Am Chem Soc ; 141(42): 16997-17005, 2019 10 23.
Article in English | MEDLINE | ID: mdl-31592655

ABSTRACT

Upconverting nanoparticles provide valuable benefits as optical probes for bioimaging and Förster resonant energy transfer (FRET) due to their high signal-to-noise ratio, photostability, and biocompatibility; yet, making nanoparticles small yields a significant decay in brightness due to increased surface quenching. Approaches to improve the brightness of UCNPs exist but often require increased nanoparticle size. Here we present a unique core-shell-shell nanoparticle architecture for small (sub-20 nm), bright upconversion with several key features: (1) maximal sensitizer concentration in the core for high near-infrared absorption, (2) efficient energy transfer between core and interior shell for strong emission, and (3) emitter localization near the nanoparticle surface for efficient FRET. This architecture consists of ß-NaYbF4 (core) @NaY0.8-xErxGd0.2F4 (interior shell) @NaY0.8Gd0.2F4 (exterior shell), where sensitizer and emitter ions are partitioned into core and interior shell, respectively. Emitter concentration is varied (x = 1, 2, 5, 10, 20, 50, and 80%) to investigate influence on single particle brightness, upconversion quantum yield, decay lifetimes, and FRET coupling. We compare these seven samples with the field-standard core-shell architecture of ß-NaY0.58Gd0.2Yb0.2Er0.02F4 (core) @NaY0.8Gd0.2F4 (shell), with sensitizer and emitter ions codoped in the core. At a single particle level, the core-shell-shell design was up to 2-fold brighter than the standard core-shell design. Further, by coupling a fluorescent dye to the surface of the two different architectures, we demonstrated up to 8-fold improved emission enhancement with the core-shell-shell compared to the core-shell design. We show how, given proper consideration for emitter concentration, we can design a unique nanoparticle architecture to yield comparable or improved brightness and FRET coupling within a small volume.


Subject(s)
Fluorescence Resonance Energy Transfer , Nanoparticles/chemistry , Particle Size , Optical Phenomena
3.
ACS Cent Sci ; 5(7): 1211-1222, 2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31403071

ABSTRACT

Upconverting nanoparticles (UCNPs) are promising tools for background-free imaging and sensing. However, their usefulness for in vivo applications depends on their biocompatibility, which we define by their optical performance in biological environments and their toxicity in living organisms. For UCNPs with a ratiometric color response to mechanical stress, consistent emission intensity and color are desired for the particles under nonmechanical stimuli. Here, we test the biocompatibility and mechanosensitivity of α-NaYF4:Yb,Er@NaLuF4 nanoparticles. First, we ligand-strip these particles to render them dispersible in aqueous media. Then, we characterize their mechanosensitivity (∼30% in the red-to-green spectral ratio per GPa), which is nearly 3-fold greater than those coated in oleic acid. We next design a suite of ex vivo and in vivo tests to investigate their structural and optical properties under several biorelevant conditions: over time in various buffers types, as a function of pH, and in vivo along the digestive tract of Caenorhabditis elegans worms. Finally, to ensure that the particles do not perturb biological function in C. elegans, we assess the chronic toxicity of nanoparticle ingestion using a reproductive brood assay. In these ways, we determine that mechanosensitive UCNPs are biocompatible, i.e., optically robust and nontoxic, for use as in vivo sensors to study animal digestion.

4.
Nano Lett ; 19(6): 3878-3885, 2019 06 12.
Article in English | MEDLINE | ID: mdl-31056918

ABSTRACT

The optical efficiency of lanthanide-based upconversion is intricately related to the crystalline host lattice. Different crystal fields interacting with the electron clouds of the lanthanides can significantly affect transition probabilities between the energy levels. Here, we investigate six distinct alkaline-earth rare-earth fluoride host materials (M1- xLn xF2+x, MLnF) for infrared-to-visible upconversion, focusing on nanoparticles of CaYF, CaLuF, SrYF, SrLuF, BaYF, and BaLuF doped with Yb3+ and Er3+. We first synthesize ∼5 nm upconverting cores of each material via a thermal decomposition method. Then we introduce a dropwise hot-injection method to grow optically inert MYF shell layers around the active cores. Five distinct shell thicknesses are considered for each host material, resulting in 36 unique, monodisperse upconverting nanomaterials each with size below ∼15 nm. The upconversion quantum yield (UCQY) is measured for all core/shell nanoparticles as a function of shell thickness and compared with hexagonal (ß-phase) NaGdF4, a traditional upconverting host lattice. While the UCQY of core nanoparticles is below the detection limit (<10-5%), it increases by 4 to 5 orders of magnitude as the shell thickness approaches 4-6 nm. The UCQY values of our cubic MLnF nanoparticles meet or exceed the ß-NaGdF4 reference sample. Across all core/shell samples, SrLuF nanoparticles are the most efficient, with UCQY values of 0.53% at 80 W/cm2 for cubic nanoparticles with ∼11 nm edge length. This efficiency is 5 times higher than our ß-NaGdF4 reference material with comparable core size and shell thickness. Our work demonstrates efficient and bright upconversion in ultrasmall alkaline-earth-based nanoparticles, with applications spanning biological imaging and optical sensing.

5.
Nano Lett ; 18(7): 4454-4459, 2018 07 11.
Article in English | MEDLINE | ID: mdl-29927609

ABSTRACT

Lanthanide-doped nanoparticles are an emerging class of optical sensors, exhibiting sharp emission peaks, high signal-to-noise ratio, photostability, and a ratiometric color response to stress. The same centrosymmetric crystal field environment that allows for high mechanosensitivity in the cubic-phase (α), however, contributes to low upconversion quantum yield (UCQY). In this work, we engineer brighter mechanosensitive upconverters using a core-shell geometry. Sub-25 nm α-NaYF4:Yb,Er cores are shelled with an optically inert surface passivation layer of ∼4.5 nm thickness. Using different shell materials, including NaGdF4, NaYF4, and NaLuF4, we study how compressive to tensile strain influences the nanoparticles' imaging and sensing properties. All core-shell nanoparticles exhibit enhanced UCQY, up to 0.14% at 150 W/cm2, which rivals the efficiency of unshelled hexagonal-phase (ß) nanoparticles. Additionally, strain at the core-shell interface can tune mechanosensitivity. In particular, the compressive Gd shell results in the largest color response from yellow-green to orange or, quantitatively, a change in the red to green ratio of 12.2 ± 1.2% per GPa. For all samples, the ratiometric readouts are consistent over three pressure cycles from ambient to 5 GPa. Therefore, heteroepitaxial shelling significantly improves signal brightness without compromising the core's mechano-sensing capabilities and further, promotes core-shell cubic-phase nanoparticles as upcoming in vivo and in situ optical sensors.

6.
Nat Nanotechnol ; 12(11): 1055-1059, 2017 11.
Article in English | MEDLINE | ID: mdl-28945237

ABSTRACT

Circularly polarized light (CPL) exerts a force of different magnitude on left- and right-handed enantiomers, an effect that could be exploited for chiral resolution of chemical compounds as well as controlled assembly of chiral nanostructures. However, enantioselective optical forces are challenging to control and quantify because their magnitude is extremely small (sub-piconewton) and varies in space with sub-micrometre resolution. Here, we report a technique to both strengthen and visualize these forces, using a chiral atomic force microscope probe coupled to a plasmonic optical tweezer. Illumination of the plasmonic tweezer with CPL exerts a force on the microscope tip that depends on the handedness of the light and the tip. In particular, for a left-handed chiral tip, transverse forces are attractive with left-CPL and repulsive with right-CPL. Additionally, total force differences between opposite-handed specimens exceed 10 pN. The microscope tip can map chiral forces with 2 nm lateral resolution, revealing a distinct spatial distribution of forces for each handedness.

7.
Nano Lett ; 17(7): 4172-4177, 2017 07 12.
Article in English | MEDLINE | ID: mdl-28608687

ABSTRACT

Mechanical forces affect a myriad of processes, from bone growth to material fracture to touch-responsive robotics. While nano- to micro-Newton forces are prevalent at the microscopic scale, few methods have the nanoscopic size and signal stability to measure them in vivo or in situ. Here, we develop an optical force-sensing platform based on sub-25 nm NaYF4 nanoparticles (NPs) doped with Yb3+, Er3+, and Mn2+. The lanthanides Yb3+ and Er3+ enable both photoluminescence and upconversion, while the energetically coupled d-metal Mn2+ adds force tunability through its crystal field sensitivity. Using a diamond anvil cell to exert up to 3.5 GPa pressure or ∼10 µN force per particle, we track stress-induced spectral responses. The red (660 nm) to green (520, 540 nm) emission ratio varies linearly with pressure, yielding an observed color change from orange to red for α-NaYF4 and from yellow-green to green for d-metal optimized ß-NaYF4 when illuminated in the near infrared. Consistent readouts are recorded over multiple pressure cycles and hours of illumination. With the nanoscopic size, a dynamic range of 100 nN to 10 µN, and photostability, these nanoparticles lay the foundation for visualizing dynamic mechanical processes, such as stress propagation in materials and force signaling in organisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...