Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 28(29): 39310-39321, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33755885

ABSTRACT

Ambient air particulate matter (PM) and PM-associated environmentally persistent free radicals (EPFRs) have been documented to contribute to pollution-related health effects. Studies of ambient air PM potentially bear artifacts stemming from the collection methods. We have investigated the applicability of PM phytosampling (PHS) as a supplementary tool to a classic PM sampler in respect of achieving better PM chemical composition assessment (primarily organic fraction). Phytosampling is a static PM collection method relying on the particle entrapment by the plant's leaf through electrostatic forces and surface trichomes. We have investigated the differences in the EPFR and polycyclic aromatic hydrocarbon (PAH) speciation and concentration on ambient air PM for PHS and high-volume PM sampler (HVS). The advantages of PHS are easy particle recovery from the matrix, collection under natural environmental conditions, and the ability to apply a dense collection network to accurately represent spatial pollutant distribution. The experimental results show that the PHS can provide valuable speciation information, sometimes different from that observed for HVS. For PM collected by PHS, we detected the larger contribution of oxygen-centered EPFRs, different decay behavior, and more consistent PAH distribution between different PM sizes compared to the PM from HVS. These results indicate that the isolation of samples from the ambient during HVS sampling and exposure to high-volume airflow may alter the chemical composition of the samples, while the PHS method could provide details on the original speciation and concentration and be more representative of the PM surface. However, PHS cannot evaluate an absolute air concentration of PM, so it serves as an excellent supplementary tool to work in conjunction with the standard PM collection method.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Air Pollutants/analysis , Environmental Monitoring , Environmental Pollution , Free Radicals/analysis , Particle Size , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis
2.
Environ Sci Technol ; 53(8): 4364-4370, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30875473

ABSTRACT

A commercially available, 3D printer nanocomposite filament of carbon nanotubes (CNTs) and acrylonitrile-butadiene-styrene (ABS) was analyzed with respect to its VOC emissions during simulated fused deposition modeling (FDM) and compared with a regular ABS filament. VOC emissions were quantified and characterized under a variety of conditions to simulate the thermal degradation that takes place during FDM. Increasing the residence time and temperature resulted in significant increases in VOC emissions, and the oxygen content of the reaction gas influenced the VOC profile. In agreement with other studies, the primary emitted VOC was styrene. Multiple compounds are reported in this work for the first time as having formed during FDM, including 4-vinylcyclohexene and 2-phenyl-2-propanol. Our results show that printing 222.0 g of filament is enough to surpass the reference concentration for inhalation exposure of 1 mg/m3 according to the EPA's Integrated Risk Information System (IRIS). The presence of CNTs in the filament influenced VOC yields and product ratios through three types of surface interactions: (1) adsorption of O2 on CNTs lowers the available O2 for oxidation of primary backbone cleavage intermediates, (2) adsorption of styrene and other VOCs to CNTs leads to surface-catalyzed degradation, and (3) CNTs act as a trap for certain VOCs and prevent them from entering vapor emissions. While the presence of CNTs in the filament lowered the total VOC emission under most experimental conditions, they increased the emission of the most hazardous VOCs, such as α-methylstyrene and benzaldehyde. The present study has identified an increased risk associated with the use of CNT nanocomposites in 3D printing.


Subject(s)
Nanotubes, Carbon , Volatile Organic Compounds , Inhalation Exposure , Printing, Three-Dimensional , Styrene
SELECTION OF CITATIONS
SEARCH DETAIL