Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 19(12)2018 Dec 07.
Article in English | MEDLINE | ID: mdl-30544528

ABSTRACT

The root system architecture (RSA) of plants is highly dependent on the surrounding nutrient environment. The uptake of essential nutrients triggers various signaling cascades and fluctuations in plant hormones to elicit physical changes in RSA. These pathways may involve signaling components known as small signaling peptides (SSPs), which have been implicated in a variety of plant developmental processes. This review discusses known nutrient-responsive SSPs with a focus on several subclasses that have been shown to play roles in root development. Most functionally well-characterized cases of SSP-mediated changes in RSA are found in responses to nitrogen (N) and phosphorus (P) availability, but other nutrients have also been known to affect the expression of SSP-encoding genes. These nutrient-responsive SSPs may interact downstream with leucine-rich repeat receptor kinases (LRR-RKs) to modulate hormone signaling and cellular processes impacting plant root development. SSPs responsive to multiple nutrient cues potentially act as mediators of crosstalk between the signaling pathways. Study of SSP pathways is complicated because of functional redundancy within peptide and receptor families and due to their functionality partly associated with post-translational modifications; however, as genomic research and techniques progress, novel SSP-encoding genes have been identified in many plant species. Understanding and characterizing the roles of SSPs influencing the root phenotypes will help elucidate the processes that plants use to optimize nutrient acquisition in the environment.


Subject(s)
Plant Roots/metabolism , Protein Sorting Signals/physiology , Nitrogen/metabolism , Phosphorus/metabolism , Plant Proteins/metabolism , Plants/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/physiology
2.
Curr Opin Plant Biol ; 39: 31-39, 2017 10.
Article in English | MEDLINE | ID: mdl-28582679

ABSTRACT

Root system architecture (RSA) and physiological functions define macronutrient uptake efficiency. Small signaling peptides (SSPs), that act in manners similar to hormones, and their cognate receptors transmit signals both locally and systemically. Several SSPs controlling morphological and physiological traits of roots have been identified to be associated with macronutrient uptake. Recent development in plant genome research has provided an avenue toward systems-based identification and prediction of additional SSPs. This review highlights recent studies on SSP pathways important for optimization of macronutrient uptake and provides new insights into the diversity of SSPs regulated in response to changes in macronutrient availabilities.


Subject(s)
Peptides/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plants/metabolism , Signal Transduction , Gene Expression , Nitrogen/metabolism , Peptides/genetics , Plant Root Nodulation , Plants/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...