Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 165: 86-95, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28363579

ABSTRACT

In the current work, flexible, lightweight, and strong conductive nanopapers based on cellulose nanofibers (CNFs) with poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) and/or polypyrrole (PPy) were prepared by following a mixing and in situ chemical polymerization method. A successful homogeneous coating of PEDOT:PSS on cellulose nanofibers occurred by means hydrogen-bonding interactions between the hydroxyl functionalized CNF and the electronically charged PEDOT:PSS, as shown by FTIR spectra. The electrical conductivity and the specific capacitance of CNF-PEDOT:PSS nanopapers were 2.58Scm-1 and 6.21Fg-1, respectively. Further coating of PPy produced a substantial improvement on the electrical conductivity (10.55Scm-1) and the specific capacitance (315.5Fg-1) of the resulting CNF-PEDOT:PSS-PPy nanopaper. A synergistic phenomenon between both conductive polymers supported the high electrical conductivity and specific capacitance of the ternary formulation. Moreover, CNF-PEDOT:PSS-PPy nanopaper showed higher mechanical properties and it was more flexible than the nanopaper containing only polypyrrole conducting polymer (CNF-PPy). It is concluded that the good mechanical, electrical and electrochemical properties of the ternary formulation can apply for smart nanopaper in flexible electronics and energy storage devices.

2.
Carbohydr Polym ; 152: 361-369, 2016 Nov 05.
Article in English | MEDLINE | ID: mdl-27516283

ABSTRACT

In this work, we prepare cellulose nanopapers of high mechanical performance and with the electrical conductivity of a semiconductor. Cellulose nanofibers (CNF) from bleached softwood pulp were coated with polypyrrole (PPy) via in situ chemical polymerization, in presence of iron chloride (III) as oxidant agent. The structure and morphology of nanopapers were studied, as well as their thermal, mechanical and conductive properties. Nanopaper from pure CNF exhibited a very high tensile response (224MPa tensile strength and 14.5GPa elastic modulus). The addition of up to maximum 20% of polypyrrole gave CNF/PPy nanopapers of high flexibility and still good mechanical properties (94MPa strength and 8.8GPa modulus). The electrical conductivity of the resulting CNF/PPy nanopaper was of 5.2 10(-2)Scm(-1), with a specific capacitance of 7.4Fg(-1). The final materials are strong and conductive nanopapers that can find application as biodegradable flexible thin-film transistor (TFT) or as flexible biosensor.


Subject(s)
Cellulose/chemistry , Nanocomposites/chemistry , Nanofibers/chemistry , Paper , Polymers/chemistry , Pyrroles/chemistry , Shear Strength , Elastic Modulus , Electric Conductivity , Hardness , Pinus , Polymerization , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...