Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Astrobiology ; 9(1): 1-22, 2009.
Article in English | MEDLINE | ID: mdl-19203238

ABSTRACT

The discovery of extrasolar planets is one of the greatest achievements of modern astronomy. The detection of planets that vary widely in mass demonstrates that extrasolar planets of low mass exist. In this paper, we describe a mission, called Darwin, whose primary goal is the search for, and characterization of, terrestrial extrasolar planets and the search for life. Accomplishing the mission objectives will require collaborative science across disciplines, including astrophysics, planetary sciences, chemistry, and microbiology. Darwin is designed to detect rocky planets similar to Earth and perform spectroscopic analysis at mid-infrared wavelengths (6-20 mum), where an advantageous contrast ratio between star and planet occurs. The baseline mission is projected to last 5 years and consists of approximately 200 individual target stars. Among these, 25-50 planetary systems can be studied spectroscopically, which will include the search for gases such as CO(2), H(2)O, CH(4), and O(3). Many of the key technologies required for the construction of Darwin have already been demonstrated, and the remainder are estimated to be mature in the near future. Darwin is a mission that will ignite intense interest in both the research community and the wider public.


Subject(s)
Exobiology/methods , Extraterrestrial Environment , Origin of Life , Planets , Space Flight , Astronomy , Bayes Theorem , Image Processing, Computer-Assisted , Spacecraft , Spectrophotometry, Infrared , Stars, Celestial
2.
Appl Opt ; 47(31): 5728-35, 2008 Nov 01.
Article in English | MEDLINE | ID: mdl-19122712

ABSTRACT

We demonstrate the modal filtering properties of newly developed single mode silver halide fibers for use at midinfrared wavelengths, centered at 10.5 microm. The goal was to achieve a suppression of nonfundamental modes greater than a factor of 300 to enable the detection and characterization of Earthlike exoplanets with a space-based nulling interferometer. Fiber segments of 4.5 cm, 10.5 cm, 15 cm, and 20 cm lengths were tested. We find that the performance of the fiber was limited not by the modal filtering properties of the core but by the unsuppressed cladding modes present at the output of the fiber. In 10.5 cm and longer sections, this effect can be alleviated by properly aperturing the output. Exclusive of coupling losses, the fiber segments of 10.5-20 cm length can provide power suppression of undesirable components of the input field by a factor of 15,000 at least. The demonstrated performance thus far surpasses our requirements, such that even very short sections of fiber provide adequate modal filtering for exoplanet characterization.

3.
Appl Opt ; 46(32): 7957-62, 2007 Nov 10.
Article in English | MEDLINE | ID: mdl-17994147

ABSTRACT

We present a technique for measuring the modal filtering ability of single mode fibers. The ideal modal filter rejects all input field components that have no overlap with the fundamental mode of the filter and does not attenuate the fundamental mode. We define the quality of a nonideal modal filter Q(f) as the ratio of transmittance for the fundamental mode to the transmittance for an input field that has no overlap with the fundamental mode. We demonstrate the technique on a 20 cm long mid-infrared fiber that was produced by the U.S. Naval Research Laboratory. The filter quality Q(f) for this fiber at 10.5 microm wavelength is 1000+/-300. The absorption and scattering losses in the fundamental mode are approximately 8 dB/m. The total transmittance for the fundamental mode, including Fresnel reflections, is 0.428+/-0.002. The application of interest is the search for extrasolar Earthlike planets using nulling interferometry. It requires high rejection ratios to suppress the light of a bright star, so that the faint planet becomes visible. The use of modal filters increases the rejection ratio (or, equivalently, relaxes requirements on the wavefront quality) by reducing the sensitivity to small wavefront errors. We show theoretically that, exclusive of coupling losses, the use of a modal filter leads to the improvement of the rejection ratio in a two-beam interferometer by a factor of Q(f).

4.
Opt Lett ; 32(20): 2933-5, 2007 Oct 15.
Article in English | MEDLINE | ID: mdl-17938657

ABSTRACT

We describe a new architecture for laser displacement metrology with a drastic reduction in the size and complexity of the optical head. Connected by a single optical fiber, the compact heads are easy to integrate and readily multiplexed to support applications requiring large numbers of sensors. The approach is made possible by modulating the outgoing laser light with a binary random noise code, allowing the detected signals to be discriminated based on their propagation delay. We demonstrate a displacement resolution of 1.1 nm rms.

5.
Opt Lett ; 28(11): 890-2, 2003 Jun 01.
Article in English | MEDLINE | ID: mdl-12816236

ABSTRACT

The Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor permits absolute distance measurement with subnanometer accuracy, an improvement of 4 orders of magnitude over current techniques. The system uses fast phase modulators to resolve the integer cycle ambiguity of standard interferometers. The concept is described and demonstrated over target distances up to 1 m. The design can be extended to kilometer-scale separations.

SELECTION OF CITATIONS
SEARCH DETAIL
...