Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Soft Robot ; 7(5): 649-662, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32160139

ABSTRACT

By designing an actuator composed of thin layers with different coefficients of thermal expansion (CTE) together with an electrically conductive layer, the CTE mismatch can be utilized to produce soft electrothermal actuators (ETAs). These actuators have been typically implemented using only two layers, commonly relying on Timoshenko's analytic model that correlates the temperature to the actuator's curvature. In this study, we extend the analytic model to include the thermoelectric relation present in ETAs, that is, the conductive layer's properties with respect to the operation temperature. By applying the thermoelectric relation, a minimal voltage optimization can be applied to the analytic model. Using dimensionless analysis, we optimize the ETAs performance for both bi- and tri-layer ETAs with and without the thermal modeling. The bi-layer optimization not only predicts the maximal value for the bi-layer performance but also provides the optimal thickness of each layer for any couple of materials. We validate the tri-layer analytic model experimentally by measuring the curvature for different third layer thicknesses. Finally, we optimize the tri-layer design based on the analytic model, which can achieve an improvement in curvature per voltage of >3000% over the optimal bi-layer ETA.

2.
Soft Robot ; 7(2): 123-129, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31580782

ABSTRACT

Due to their high deformability, lightness, and safe interaction with the surrounding environment, flexible actuators are key ingredients in soft robotics technologies. Among these, electro-thermal actuators (ETAs), based on carbon nanotubes (CNTs), are used to generate agile movements when current is applied. The extent of movement is determined mostly by the coefficient of thermal expansion (CTE) of the materials arranged in a bi-/tri-layer structure. However, current CNT-based ETAs usually accomplish only simple actions with limited movements. In this work, we successfully developed novel ETAs that are capable of carrying out various controllable movements, such as extremely high bending curvature or unique actuations mimicking a wheel and a worm. These superior functionalities are achieved by adding a third layer or hinges composed of a thermo-responsive shape memory polymer (SMP) onto a bi-layer CNT-kapton ETA. To predict the unique movements of the "triangle" and "worm" actuators, finite element simulations were performed. The combination of SMP and electro-thermal behavior demonstrates its potential for applications in the field of soft actuators and robotics.

3.
ACS Omega ; 4(22): 19635-19640, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31788593

ABSTRACT

Vanadium dioxide, a well-known phase transition material with abrupt resistance change during its transition temperature, is herein used to fabricate the transparent mesh film onto a glass slide through self-assembly mesh printing. A record high ON/OFF ratio up to 104 is achieved together with high visible transmittance of 86% compared to the normal glass slide with visible transmittance at 88%. The high transparent properties make the resistive switches applicable for next-generation electronics, such as see-through computing device and beyond. A simple and scalable mesh printing approach-integrated phase change material may provide a promising way to fabricate transparent resistance switches for next-generation electronics.

4.
J Colloid Interface Sci ; 536: 701-709, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30408690

ABSTRACT

Directed-assembly by standing surface acoustic waves (SSAWs) only requires an acoustic contrast between particles and their surrounding medium. It is therefore highly attractive as this requirement is fulfilled by almost all dispersed systems. Previous studies utilizing SSAWs demonstrated mainly reversible microstructure arrangements from nanoparticles. The surface chemistry of colloids dramatically influences their tendency to aggregate and sinter; therefore, it should be possible to form permanent microstructures with intimate contact between nanoparticles by controlling this property. Dispersed silver nanoparticles in a microfluidic channel were exposed to SSAWs and reversibly accumulated at the pressure nodes. We show that addition of chloride ions that remove the polyacrylic capping of the nanoparticles trigger their sintering and the formation of stable conducting silver microstructures. Moreover, if the destabilizing ions are added prior to nanoparticle assembly while continuously streaming the dispersion through the acoustic aperture, the induced aggregation leads to formation of significantly thinner microstructures, which are (for the first time) unlimited in length by the acoustic apparatus. This new approach overcomes the discrepancy between the need for organic dispersants to prevent unwanted aggregation in the dispersion, and the end product's requirement for intimate contact between the colloidal particles.

5.
Adv Mater ; 30(41): e1706344, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29756242

ABSTRACT

The field of 3D printing, also known as additive manufacturing (AM), is developing rapidly in both academic and industrial research environments. New materials and printing technologies, which enable rapid and multimaterial printing, have given rise to new applications and utilizations. However, the main bottleneck for achieving many more applications is the lack of materials with new physical properties. Here, some of the recent reports on novel materials in this field, such as ceramics, glass, shape-memory polymers, and electronics, are reviewed. Although new materials have been reported for all three main printing approaches-fused deposition modeling, binder jetting or laser sintering/melting, and photopolymerization-based approaches, apparently, most of the novel physicochemical properties are associated with materials printed by photopolymerization approaches. Furthermore, the high resolution that can be achieved using this type of 3D printing, together with the new properties, has resulted in new implementations such as microfluidic, biomedical devices, and soft robotics. Therefore, the focus here is on photopolymerization-based additive manufacturing including the recent development of new methods, novel monomers, and photoinitiators, which result in previously inaccessible applications such as complex ceramic structures, embedded electronics, and responsive 3D objects.

6.
Biosens Bioelectron ; 102: 365-371, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29172145

ABSTRACT

Bioelectronics platforms are gaining widespread attention as they provide a template to study the interactions between biological species and electronics. Decoding the effect of the electrical signals on the cells and tissues holds the promise for treating the malignant tissue growth, regenerating organs and engineering new-age medical devices. This work is a step forward in this direction, where bio- and electronic materials co-exist on one platform without any need for post processing. We fabricate a freestanding and flexible hydrogel based platform using 3D bioprinting. The fabrication process is simple, easy and provides a flexible route to print materials with preferred shapes, size and spatial orientation. Through the design of interdigitated electrodes and heating coil, the platform can be tailored to print various circuits for different functionalities. The biocompatibility of the printed platform is tested using C2C12 murine myoblasts cell line. Furthermore, normal human dermal fibroblasts (primary cells) are also seeded on the platform to ascertain the compatibility.


Subject(s)
Bioprinting , Biosensing Techniques , Printing, Three-Dimensional , Tissue Engineering , Cell Line , Cell Survival , Fibroblasts/chemistry , Fibroblasts/cytology , Humans , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Myoblasts/chemistry , Myoblasts/cytology , Tissue Scaffolds/chemistry
7.
Small ; 14(1)2018 01.
Article in English | MEDLINE | ID: mdl-29134772

ABSTRACT

The field of printed electronics is continually trying to reduce the dimensions of the electrical components. Here, a method of printing metallic lines with widths as small as 15 nm and up to a few micrometers using fountain pen nanolithography (FPN) is shown. The FPN technique is based on a bent nanopipette with atomic force feedback that acts similar to a nanopen. The geometry of the nanopen allows for rapid placement accuracy of the printing tip, on any desired location, with the highest of optical sub-micrometer resolution. Using this nanopen, investigations of various inks are undertaken together with instrumental and script-tool development that allows accurate printing of multiple layers. This has led to the printing of conductive lines using inks composed of silver nanoparticles and salt solutions of silver and copper. In addition, it is shown that the method can be applied to substrates of various materials with minimal effect on the dimension of the line. The line widths are varied by using nanopens with different orifices or by tailoring the wetting properties of the ink on the substrate. Metallic interconnections of conducting lines are reported.

8.
ACS Appl Mater Interfaces ; 9(50): 44214-44221, 2017 Dec 20.
Article in English | MEDLINE | ID: mdl-29172418

ABSTRACT

The laser-induced microbubble technique (LIMBT) has recently been developed for micro-patterning of various materials. In this method, a laser beam is focused on a dispersion of nanoparticles leading to the formation of a microbubble due to laser heating. Convection currents around the microbubble carry nanoparticles so that they become pinned to the bubble/substrate interface. The major limitation of this technique is that for most materials, a noncontinuous deposition is formed. We show that continuous patterns can be formed by preventing the microbubble from being pinned to the deposited material. This is done by modulating the laser so that the construction and destruction of the microbubble are controlled. When the method is applied to a dispersion of Ag nanoparticles, continuous electrically conductive lines are formed. Furthermore, the line width is narrower than that achieved by the standard nonmodulated LIMBT. This approach can be applied to the direct-write fabrication of micron-size conductive patterns in electronic devices without the use of photolithography.

9.
Adv Mater ; 29(15)2017 Apr.
Article in English | MEDLINE | ID: mdl-28169466

ABSTRACT

Stretchable UV-curable (SUV) elastomers can be stretched by up to 1100% and are suitable for digital-light-processing (DLP)-based 3D-printing technology. DLP printing of these SUV elastomers enables the direct creation of highly deformable complex 3D hollow structures such as balloons, soft actuators, grippers, and buckyball electronical switches.

10.
Adv Mater ; 28(22): 4166, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27273436

ABSTRACT

On page 4449, D. Cohn, S. Magdassi, and co-workers describe a general and facile method based on 3D printing of methacrylated macromonomers to fabricate shape-memory objects that can be used in flexible and responsive electrical circuits. Such responsive objects can be used in the fabrication of soft robotics, minimal invasive medical devices, sensors, and wearable electronics. The use of 3D printing overcomes the poor processing characteristics of thermosets and enables complex geometries that are not easily accessible by other techniques.

11.
Adv Mater ; 28(16): 3102-10, 2016 04.
Article in English | MEDLINE | ID: mdl-26913959

ABSTRACT

A platform of mechanotactic hybrids is established by projecting lateral gradients of apparent interfacial stiffness onto the planar surface of a compliant hydrogel layer using an underlying rigid substrate with microstructures inherited from 3D printed molds. Using this platform, the mechanistic coupling of epithelial migration with the stiffness of the extracellular matrix (ECM) is found to be independent of the interfacial compositional and topographical cues.


Subject(s)
Biomimetic Materials/chemistry , Cell Movement , Epithelial Cells/cytology , Extracellular Matrix/chemistry , Hydrogels/chemistry , Traction/methods , Printing, Three-Dimensional
12.
Adv Mater ; 28(22): 4449-54, 2016 06.
Article in English | MEDLINE | ID: mdl-26402320

ABSTRACT

The formation of 3D objects composed of shape memory polymers for flexible electronics is described. Layer-by-layer photopolymerization of methacrylated semicrystalline molten macromonomers by a 3D digital light processing printer enables rapid fabrication of complex objects and imparts shape memory functionality for electrical circuits.

13.
ACS Appl Mater Interfaces ; 6(21): 18668-72, 2014 Nov 12.
Article in English | MEDLINE | ID: mdl-25331032

ABSTRACT

We present hereby a general approach for rapid fabrication of large scale, patterned transparent conductive coatings composed of nanoparticles. The approach is based on direct formation of "2D holes" with controllable diameter onto a thin film composed of metal nanoparticles. The holes are formed by inkjet printing a dewetting aqueous liquid, which pushes away the metal nanoparticles, thus forming a transparent array of interconnected conductive rings.

14.
Small ; 10(17): 3551-4, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-25340188

ABSTRACT

Ink-jet printing of thermoelectric nanomaterials is successfully used to fabricate flexible thin film TE devices for power generation and cooling.

15.
Nanoscale ; 6(11): 5581-91, 2014 Jun 07.
Article in English | MEDLINE | ID: mdl-24777332

ABSTRACT

This is a review on recent developments in the field of transparent conductive coatings (TCCs) for ITO replacement. The review describes the basic properties of conductive nanomaterials suitable for fabrication of such TCCs (metallic nanoparticles and nanowires, carbon nanotubes and graphene sheets), various methods of patterning the metal nanoparticles with formation of conductive transparent metallic grids, honeycomb structures and 2D arrays of interconnected rings as well as fabrication of TCCs based on graphene and carbon nanotubes. Applications of TCCs in electronic and optoelectronic devices, such as solar cells, electroluminescent and electrochromic devices, touch screens and displays, and transparent EMI shielders, are discussed.

16.
Nanoscale ; 6(9): 4572-6, 2014 May 07.
Article in English | MEDLINE | ID: mdl-24676234

ABSTRACT

Printed electrochromic flexible films were obtained by combining transparent silver grid electrodes formed by self-assembly and inkjet printed WO3 nanoparticles. Concentrated dispersions of WO3 nanoparticles were inkjet printed on transparent plastic silver grid electrodes with a high transparency of 83% in the spectral range of 400-800 nm, and a low sheet resistance in the range of 1-5 Ω sq(-1). These electrodes were used for electrochromic applications for the first time. The resultant patterned nanostructured electrochromic films maintained their coloring and bleaching performance after bending of the flexible films.

17.
ACS Nano ; 3(11): 3537-42, 2009 Nov 24.
Article in English | MEDLINE | ID: mdl-19928933

ABSTRACT

We report here a concept for utilization of the "coffee ring effect" and inkjet printing to obtain transparent conductive patterns, which can replace the widely used transparent conductive oxides, such as ITO. The transparent conductive coating is achieved by forming a 2-D array of interconnected metallic rings. The rim of the individual rings is less than 10 microm in width and less than 300 nm in height, surrounding a "hole" with a diameter of about 150 microm; therefore the whole array of the interconnected rings is almost invisible to the naked eye. The rims of the rings are composed of self-assembled, closely packed silver nanoparticles, which make the individual rings and the resulting array electrically conductive. The resulting arrays of rings have a transparency of 95%; resistivity of 0.5 cm(2) was 4 +/- 0.5 Omega/, which is better than conventional ITO transparent thin films. The silver rings and arrays are fabricated by a very simple, low cost process, based on inkjet printing of a dispersion of 0.5 wt % silver nanoparticles (approximately 20 nm diameter) on plastic substrates. The performance of this transparent conductive coating was demonstrated by using it as an electrode for a plastic electroluminescent device, demonstrating the applicability of this concept in plastics electronics. It is expected that such transparent conductive coatings can be used in a wide range of applications such as displays (LCD, plasma, touch screens, e-paper), lighting devices (electroluminescence, OLED), and solar cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...