Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Temperature (Austin) ; 9(2): 196-210, 2022.
Article in English | MEDLINE | ID: mdl-36106146

ABSTRACT

Exertional heat stress disrupts gastrointestinal permeability and, through subsequent bacterial translocation, can result in potentially fatal exertional heat stroke. Glutamine supplementation is a potential countermeasure although previously validated doses are not universally well tolerated. Ten males completed two 80-minute subclinical exertional heat stress tests (EHSTs) following either glutamine (0.3 g kg FFM-1) or placebo supplementation. Small intestinal permeability was assessed using the lactulose/rhamnose dual sugar absorption test and small intestinal epithelial injury using Intestinal Fatty-Acid Binding Protein (I-FABP). Bacterial translocation was assessed using the total 16S bacterial DNA and Bacteroides/total 16S DNA ratio. The glutamine bolus was well tolerated, with no participants reporting symptoms of gastrointestinal intolerance. Small intestinal permeability was not influenced by glutamine supplementation (p = 0.06) although a medium effect size favoring the placebo trial was observed (d = 0.73). Both small intestinal epithelial injury (p < 0.01) and Bacteroides/total 16S DNA (p = 0.04) increased following exertional heat stress, but were uninfluenced by glutamine supplementation. Low-dose acute oral glutamine supplementation does not protect gastrointestinal injury, permeability, or bacterial translocation in response to subclinical exertional heat stress.

2.
Eur J Sport Sci ; 22(12): 1865-1876, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34726114

ABSTRACT

Purpose: Exertional-heat stress adversely distrupts (GI) barrier integrity and, through subsequent microbial translocation (MT), can result in potentially fatal exertional-heat stroke. Acute glutamine (GLN) supplementation is a potential nutritional countermeasure, although the practical value of current supplementation regimens is questionable.Method: Ten males completed two high-intensity exertional-heat stress tests (EHST) involving running in the heat (40°C and 40% relative humidity) at lactate threshold to volitional exhaustion. Participants ingested GLN (0.3 g kg FFM-1) or a non-calorific placebo (PLA) one hour prior to the EHST. Venous blood was drawn pre-, post- and one-hour post-EHST. GI permeability was assessed using a serum dual-sugar absorption test (DSAT) and small intestinal epithelial injury using plasma Intestinal Fatty-Acid Binding Protein (I-FABP). MT was assessed using the Bacteroides/total 16S DNA ratio.Results: Volitional exhaustion occurred after 22:19 ± 2:22 (minutes: seconds) in both conditions, during which whole-body physiological responses and GI symptoms were not different (p > 0.05). GI permeability (serum DSAT) was greater following GLN (0.043 ± 0.020) than PLA (0.034 ± 0.019) (p = 0.02; d = 0.47), but small intestine epithelial injury (I-FABP) increased comparably (p = 0.22; ηp2 = 0.16) following the EHST in both trials (GLN Δ = 1.25 ± 0.63 ng ml-1; PLA Δ = 0.92 ± 0.44 ng ml-1). GI MT (Bacteroides/total 16S DNA ratio) was unchanged in either condition following the EHST (p = 0.43).Conclusion: Acute low-dose (0.3 g kg-1 fat free mass) GLN supplementation ingested one hour before high-intesity exertional-heat stress worsened GI permeability, but did not influence either small intestinal epithilial injury or microbial translocation.Abbreviations: ANOVA: Analysis of variance; CV: Coefficient of Variation; DSAT: Dual Sugar Absorption Test; EDTA: Ethylenediaminetetraacetic acid; EHST: Exertional Heat Stress Test; ELISA: Enzyme Linked Immunosorbent Assay; FFM: Fat Free Mass; GI: Gastrointestinal; GFR: Glomerular Filtration Rate; GLN: Glutamine; HPLC: High Performance Liquid Chromatography; HR: Heart Rate; I-FABP: Intestinal Fatty-Acid Binding Protein; ISAK: International Society for the Advancement of Anthropometric Kinanthropometry; L/R: Lactulose-to-Rhamnose; LT: Lactate Threshold; MT: Microbial Translocation; mVAS: Modified Visual Analogue Scale; PBS: Phosphate-Buffered Saline; PLA: Placebo; qPCR: Quantitative Polymerase Chain Reaction; RH: Relative Humidity; RPE: Rate of Perceived Exertion; SD: Standard Deviation; SEM: Sensor Electronics Module; Tcore: Core Body Temperature; Tbody: Mean Body Temperature; Tskin: Mean Skin Temperature; TS: Thermal Sensation; V̇O2max: Maximal Oxygen Uptake.Highlights The pathophysiology of exertional-heat stroke is widely hypothesised to be at least in part attributable to a systemic inflammatory response caused by the leak of gastrointestinal microbes into the circulating blood.Acute high-dose (0.9 g kg FFM-1) L-glutamine supplementation is widely promoted as a practical strategy to protect gastrointestinal barrier integrity during exertional-heat stress. However, previously validated doses are often poorly tolerated and cannot be recommended for widespread implementation.This study examined the efficacy of low-dose (0.30 g kg FFM-1; ∼20 grams) acute L-glutamine supplementation on small intestinal injury, permeability, and microbial translocation in response a high-intensity exertional-heat stress test to exhaustion (20-30 min). This type of exercise accounts for the majority of exertional-heat stroke cases in the military.Despite being universally well-tolerated across all participants, acute low-dose L-glutamine supplementation worsened gastrointestinal permeability, without influencing either small intestinal injury or microbial translocation. These findings do not support the application of low-dose L-glutamine supplementation to help prevent exertional-heat stroke.


Subject(s)
Heat Stress Disorders , Heat Stroke , Humans , Male , Dietary Supplements , Glutamine , Heat-Shock Response , Lactates , Permeability , Polyesters , Sugars
3.
Healthcare (Basel) ; 9(4)2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33918001

ABSTRACT

The utilization of person-centered care is highlighted as essential for health promotion, yet implementation has been inconsistent and multiple issues remain. There is a dearth of applied research exploring the facets of successful implementation. In this paper, a person-centered wellbeing program spanning various groups is discussed, outlining the central principles that have allowed for successful outcomes. Ten years of pragmatic pre-post service evaluation have shown consistent improvement in measures of functional capacity and wellbeing. The method for this paper is a reflective exploration of the theory and practices that can explain the continual improvement the clinics have achieved over 10 years. Core principles relate to connecting with people, connecting through groups, and connecting with self. The operationalization and theoretical explanation of these principles is outlined. The discussion of these principles posits essential factors to prioritize to advance the implementation of person-centered care in health promotion for long-term conditions.

4.
Exp Physiol ; 106(1): 191-199, 2021 01.
Article in English | MEDLINE | ID: mdl-32249985

ABSTRACT

NEW FINDINGS: What is the topic of this review? Exertional heat illness (EHI) remains a persistent problem for athletes and individuals. This threat remains despite numerous athletic position statements and occupational guidance policies. This review explores primary evidence that demonstrates a direct association between 'known' risk factors and EHI. What advances does it highlight? Primary evidence to support 'known' risk factors associated with EHI is not comprehensive. Furthermore, it is not evident that single individual factors predispose individuals to greater risk. In fact, the evidence indicates that EHI can manifest in non-hostile compensable environments when a combination of risk factors is prevalent. ABSTRACT: Despite the widespread knowledge of exertional heat illness (EHI) and clear guidance for its prevention, the incidence of EHI remains high. We carried out a systematic review of available literature evaluating the scientific evidence underpinning the risk factors associated with EHI. Medline, PsycINFO, SportDiscus and Embase were searched from inception to January 2019 with no date limitation, with supplementary searches also being performed. Search terms included permutations of risk and heat illness, with only studies in English included. Study selection, data extraction and quality assessment, using the QUALSYST tool, were performed by two independent reviewers. Of 8898 articles identified by the searches, 42 were included in the systematic review as primary evidence demonstrating a link between a risk factor and EHI. The quality scores ranged from 57.50 to 100%, and studies were generally considered to be of strong quality. The majority of risks attributable to EHI were categorized as those associated with lifestyle factors. The findings from the systematic review suggest complex manifestation of EHI through multiple risk factors rather than any one factor in isolation. Further research is needed to explore the accumulation of risk factors to help in development of effective preventative measures.


Subject(s)
Heat Stress Disorders/epidemiology , Heat Stress Disorders/physiopathology , Hot Temperature , Sports/physiology , Athletes , Humans , Incidence , Risk Factors
5.
Nutrients ; 12(10)2020 Sep 27.
Article in English | MEDLINE | ID: mdl-32992440

ABSTRACT

l-Glutamine (GLN) is a conditionally essential amino acid which supports gastrointestinal (GI) and immune function prior to catabolic stress (e.g., strenuous exercise). Despite potential dose-dependent benefits, GI tolerance of acute high dose oral GLN supplementation is poorly characterised. Fourteen healthy males (25 ± 5 years; 1.79 ± 0.07 cm; 77.7 ± 9.8 kg; 14.8 ± 4.6% body fat) ingested 0.3 (LOW), 0.6 (MED) or 0.9 (HIGH) g·kg·FFM-1 GLN beverages, in a randomised, double-blind, counter-balanced, cross-over trial. Individual and accumulated GI symptoms were recorded using a visual analogue scale at regular intervals up to 24-h post ingestion. GLN beverages were characterised by tonicity measurement and microscopic observations. 24-h accumulated upper- and lower- and total-GI symptoms were all greater in the HIGH, compared to LOW and MED trials (p < 0.05). Specific GI symptoms (discomfort, nausea, belching, upper GI pain) were all more pronounced on the HIGH versus LOW GLN trial (p < 0.05). Nevertheless, most symptoms were still rated as mild. In comparison, the remaining GI symptoms were either comparable (flatulence, urge to regurgitate, bloating, lower GI pain) or absent (heart burn, vomiting, urge to defecate, abnormal stools, stitch, dizziness) between trials (p > 0.05). All beverages were isotonic and contained a dose-dependent number of GLN crystals. Acute oral GLN ingestion in dosages up to 0.9 g·kg·FFM-1 are generally well-tolerated. However, the severity of mild GI symptoms appeared dose-dependent during the first two hours post prandial and may be due to high-concentrations of GLN crystals.


Subject(s)
Dietary Supplements , Gastrointestinal Diseases/drug therapy , Gastrointestinal Tract/drug effects , Glutamine/administration & dosage , Adult , Double-Blind Method , Flatulence , Gastrointestinal Diseases/immunology , Gastrointestinal Tract/physiopathology , Humans , Male , Nausea , Pilot Projects , Surveys and Questionnaires , Young Adult
6.
Eur J Appl Physiol ; 120(10): 2325-2337, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32794058

ABSTRACT

PURPOSE: Exertional-heat stress adversely disrupts gastrointestinal (GI) barrier integrity, whereby subsequent microbial translocation (MT) can result in potentially serious health consequences. To date, the influence of aerobic fitness on GI barrier integrity and MT following exertional-heat stress is poorly characterised. METHOD: Ten untrained (UT; VO2max = 45 ± 3 ml·kg-1·min-1) and ten highly trained (HT; VO2max = 64 ± 4 ml·kg-1·min-1) males completed an ecologically valid (military) 80-min fixed-intensity exertional-heat stress test (EHST). Venous blood was drawn immediately pre- and post-EHST. GI barrier integrity was assessed using the serum dual-sugar absorption test (DSAT) and plasma Intestinal Fatty-Acid Binding Protein (I-FABP). MT was assessed using plasma Bacteroides/total 16S DNA. RESULTS: UT experienced greater thermoregulatory, cardiovascular and perceptual strain (p < 0.05) than HT during the EHST. Serum DSAT responses were similar between the two groups (p = 0.59), although Δ I-FABP was greater (p = 0.04) in the UT (1.14 ± 1.36 ng·ml-1) versus HT (0.20 ± 0.29 ng·ml-1) group. Bacteroides/Total 16S DNA ratio was unchanged (Δ; -0.04 ± 0.18) following the EHST in the HT group, but increased (Δ; 0.19 ± 0.25) in the UT group (p = 0.05). Weekly aerobic training hours had a weak, negative correlation with Δ I-FABP and Bacteroides/total 16S DNA responses. CONCLUSION: When exercising at the same absolute workload, UT individuals are more susceptible to small intestinal epithelial injury and MT than HT individuals. These responses appear partially attributable to greater thermoregulatory, cardiovascular, and perceptual strain.


Subject(s)
Cardiorespiratory Fitness , Gastrointestinal Microbiome , Heat Stress Disorders/physiopathology , Intestinal Absorption , Adult , Bacteroides/isolation & purification , Bacteroides/pathogenicity , Fatty Acids/metabolism , Heat Stress Disorders/metabolism , Heat Stress Disorders/microbiology , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Male , Physical Exertion , Sugars/metabolism
7.
Physiol Rep ; 8(5): e14374, 2020 03.
Article in English | MEDLINE | ID: mdl-32170836

ABSTRACT

PURPOSE: Exertional heat stress adversely distrupts (GI) barrier integrity and, through subsequent microbial translocation (MT), negativly impacts health. Despite widespread application, the temporal reliability of popular GI barrier integity and MT biomarkers is poorly characterised. METHOD: Fourteen males completed two 80-min exertional heat stress tests (EHST) separated by 7-14 days. Venous blood was drawn pre, immediately- and 1-hr post both EHSTs. GI barrier integrity was assessed using the serum Dual-Sugar Absorption Test (DSAT), Intestinal Fatty-Acid-Binding Protein (I-FABP) and Claudin-3 (CLDN-3). MT was assessed using plasma Lipopolysaccharide Binding Protein (LBP), total 16S bacterial DNA and Bacteroides DNA. RESULTS: No GI barrier integrity or MT biomarker, except absolute Bacteroides DNA, displayed systematic trial order bias (p ≥ .05). I-FABP (trial 1 = Δ 0.834 ± 0.445 ng ml-1 ; trial 2 = Δ 0.776 ± 0.489 ng ml-1 ) and CLDN-3 (trial 1 = Δ 0.317 ± 0.586 ng ml-1 ; trial 2 = Δ 0.371 ± 0.508 ng ml-1 ) were increased post-EHST (p ≤ .01). All MT biomarkers were unchanged post-EHST. Coefficient of variation and typical error of measurement post-EHST were: 11.5% and 0.004 (ratio) for the DSAT 90-min postprobe ingestion; 12.2% and 0.004 (ratio) at 150-min postprobe ingestion; 12.1% and 0.376 ng ml-1 for I-FABP; 4.9% and 0.342 ng ml-1 for CLDN-3; 9.2% and 0.420 µg ml-1 for LBP; 9.5% and 0.15 pg µl-1 for total 16S DNA; and 54.7% and 0.032 for Bacteroides/total 16S DNA ratio. CONCLUSION: Each GI barrier integrity and MT translocation biomarker, except Bacteroides/total 16S ratio, had acceptable reliability at rest and postexertional heat stress.


Subject(s)
Gastrointestinal Tract/metabolism , Gastrointestinal Tract/microbiology , Heat Stress Disorders/blood , Heat-Shock Response/physiology , Adult , Biomarkers/blood , Claudin-3/blood , Fatty Acid-Binding Proteins/blood , Humans , Lactulose/blood , Male , Physical Exertion/physiology , Rhamnose/blood , Young Adult
8.
Nutrients ; 12(2)2020 Feb 19.
Article in English | MEDLINE | ID: mdl-32093001

ABSTRACT

Exertional heat stroke (EHS) is a life-threatening medical condition involving thermoregulatory failure and is the most severe condition along a continuum of heat-related illnesses. Current EHS policy guidance principally advocates a thermoregulatory management approach, despite growing recognition that gastrointestinal (GI) microbial translocation contributes to disease pathophysiology. Contemporary research has focused to understand the relevance of GI barrier integrity and strategies to maintain it during periods of exertional-heat stress. GI barrier integrity can be assessed non-invasively using a variety of in vivo techniques, including active inert mixed-weight molecular probe recovery tests and passive biomarkers indicative of GI structural integrity loss or microbial translocation. Strenuous exercise is strongly characterised to disrupt GI barrier integrity, and aspects of this response correlate with the corresponding magnitude of thermal strain. The aetiology of GI barrier integrity loss following exertional-heat stress is poorly understood, though may directly relate to localised hyperthermia, splanchnic hypoperfusion-mediated ischemic injury, and neuroendocrine-immune alterations. Nutritional countermeasures to maintain GI barrier integrity following exertional-heat stress provide a promising approach to mitigate EHS. The focus of this review is to evaluate: (1) the GI paradigm of exertional heat stroke; (2) techniques to assess GI barrier integrity; (3) typical GI barrier integrity responses to exertional-heat stress; (4) the aetiology of GI barrier integrity loss following exertional-heat stress; and (5) nutritional countermeasures to maintain GI barrier integrity in response to exertional-heat stress.


Subject(s)
Bacterial Translocation/physiology , Gastrointestinal Microbiome/physiology , Gastrointestinal Tract/physiopathology , Heat Stroke/physiopathology , Nutrition Therapy/methods , Dietary Supplements , Gastrointestinal Tract/microbiology , Heat Stroke/microbiology , Heat Stroke/therapy , Humans , Physical Exertion
9.
Appl Ergon ; 43(6): 1131-7, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22575491

ABSTRACT

Cardiovascular and neuromuscular responses of 12 male Royal Marine recruits (age 22 ± 3 years, body mass 80.7 ± 6.8 kg, VO(2)max 52.3 ± 2.7 ml kg(-1) min(-1)) were measured during 19.3 km of load carriage walking at 4.2 km h(-1) and carrying 31.0 kg. Heart rate during load carriage was 145 ± 10 beats·min(-1) (64 ± 5 %HRR) and showed a negative relationship with body mass (r = -0.72, P = 0.009) but no relationship with VO(2)max (ml kg(-1) min(-1); r = -0.40, P = 0.198). Load carriage caused a decrease in vertical jump height (8 ± 9%) and power (5 ± 5%) (P < 0.001). Change in vertical jump power showed a positive relationship with body mass (r(2) = 0.40, P = 0.029) but no relationship to VO(2)max (ml kg(-1) min(-1); r(2) = 0.13, P = 0.257). In conclusion, load carriage caused a reduction in vertical jump performance (i.e. decreased neuromuscular function). Lighter individuals were disadvantaged when carrying absolute loads, as they experienced higher cardiovascular strain and greater decreases in neuromuscular function.


Subject(s)
Lifting , Military Personnel , Physical Exertion/physiology , Task Performance and Analysis , Walking/physiology , Adult , Body Weight , Heart Rate , Humans , Male , Movement , Muscle Fatigue , Muscle Strength , Muscle, Skeletal/physiology , Oxygen Consumption , Statistics, Nonparametric , United Kingdom , Young Adult
10.
Med Sci Sports Exerc ; 36(9): 1522-7, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15354033

ABSTRACT

PURPOSE: The purpose of the present study was to examine the impact of cold exposure coupled with prolonged exercise upon postexercise left ventricular (LV) function and markers of myocardial damage. METHODS: colon; Eight highly trained male athletes (mean +/- SD; age: 28.2 +/- 8.8 yr; height: 1.78 +/- 0.07 m; body mass: 74.9 +/- 7.6 kg; VO2max: 65.6 +/- 7.0 mL x kg(-1) x min(-1)) performed two 100-mile cycle trials, the first in an ambient temperature of 0 degrees C, the second in an ambient temperature of 19 degrees C. Echocardiographic assessment was completed and blood samples drawn before, immediately postexercise, and 24-h postexercise. Left ventricular systolic (stroke volume [SV], ejection fraction [EF], and systolic blood pressure/end systolic volume ratio [SBP/ESV]) and diastolic (early [E] to late [A] filling ratio [E:A]) parameters were calculated. Serum was analyzed for creatine kinase isoenzyme MB (CK-MBmass) and cardiac troponin T (cTnT). cTnT was analyzed descriptively whereas other variables were assessed using two-way repeated-measures ANOVA. RESULTS: No significant change was observed in systolic function across time or between trials. A significant difference between trials was observed in E:A immediately after exercise (1.4 +/- 0.4 [19 degrees C] vs 1.8 +/- 0.3 [0 degrees C]) (P < 0.05). CK-MBmass was significantly elevated immediately after exercise in both trials (P < 0.05). Positive cTnT concentrations were observed in two subjects immediately after the 19 degrees C trial (0.012 microg x L(-1) and 0.034 microg x L(-1)). CONCLUSIONS: Cycling 100 miles in an ambient temperature of 19 degrees C is associated with an acute change in diastolic filling that is not observed after prolonged exercise at 0 degrees C. Prolonged exercise is associated with minimal cardiac damage in some individuals; it appears that this is a separate phenomenon to the change in diastolic filling.


Subject(s)
Cold Temperature , Exercise/physiology , Ventricular Function, Left , Adult , Analysis of Variance , Creatine Kinase/blood , Creatine Kinase, MB Form , Echocardiography , Humans , Isoenzymes/blood , Male , Troponin T/blood , United Kingdom
11.
Metabolism ; 53(9): 1131-5, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15334373

ABSTRACT

The main aim of this study was to investigate if whole body fat oxidation, after acipimox administration, during submaximal exercise in the cold, is different from that at temperate environments. Seven healthy recreationally active male subjects cycled at 70% Vo(2peak) for 60 minutes; once at 0 degrees C and once at 20 degrees C. To exclude availability, and therefore oxidation of plasma-derived nonesterified fatty acids (NEFA), 90 minutes before each cycling bout, subjects ingested 250 mg of the antilipolytic drug, acipimox. Blood and expired gas measurements were obtained at rest, immediately before exercise, and at 15, 30, 45, and 60 minutes of exercise. In both trials, after the ingestion of acipimox, plasma NEFA concentrations fell dramatically and immediately before and during exercise were lower than 0.05 mmol. L(-1) in both trials. Pre-exercise and exercise values of glycerol, glucose, triacylglycerol (TG), and rectal temperature (T(re)) were not different between the 0 degrees C and 20 degrees C trials. During exercise at 0 degrees C, skin temperature (T(sk)) was significantly reduced from pre-exercise values (P <.05) and at all time points was significantly lower than during exercise at 20 degrees C. Muscle temperature did not differ between trials but in both trials was lower (P <.05) at 1 cm depth than at 3 cm and 2 cm. Gross energy expenditure of cycling (0 degrees C trial, 3.6 +/- 0.1 MJ; 20 degrees C trial, 3.6 +/- 0.1 MJ), the oxidation rates of carbohydrate (0 degrees C, 32.4 +/- 0.5 KJ. min(-1); 20 degrees C, 32.6 +/- 0.7 KJ. min(-1)) and fat (0 degrees C, 24.6 +/- 1.2 KJ. min(-1); 20 degrees C, 23.0 +/- 1.8 KJ. min(-1)), and the proportion of energy derived from fat (0 degrees C, 45 +/- 1 %; 20 degrees C, 40 +/- 4%) and carbohydrate (0 degrees C, 55 +/- 1%; 20 degrees C, 58 +/- 3%) were not different between the 2 trials. In conclusion, after acipimox administration, whole body fat oxidation during exercise, designed to avoid adjustment of core temperature or thermogenesis, is not different at 0 degrees C compared with 20 degrees C. This allows the inference that during submaximal exercise, cold has no effect on the utilization of intramuscular TG (IMTG).


Subject(s)
Exercise/physiology , Fatty Acids, Nonesterified/blood , Hypolipidemic Agents/pharmacology , Lipid Metabolism , Pyrazines/pharmacology , Adult , Bicycling/physiology , Blood Volume/physiology , Body Temperature/physiology , Carbohydrate Metabolism , Exercise Test , Heart Rate/physiology , Humans , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Oxidation-Reduction , Temperature , Triglycerides/metabolism
12.
Metabolism ; 53(2): 203-8, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14767872

ABSTRACT

Exercise in the cold was investigated to establish if the relative contribution of fat to energy expenditure is affected by the increased availability of circulating nonesterified fatty acids (NEFA). Seven men after an overnight fast cycled at approximately 70% of peak oxygen uptake for 60 minutes at an ambient temperature of 0.0 degrees C +/- 0.1 degrees C. Fifteen minutes prior to exercise and then throughout the exercise, subjects were infused with either heparin (heparin) or saline (control). Immediately before exercise NEFA concentration (control, 0.27 +/- 0.04 mmol. L(-1); heparin 1.09 +/- 0.13 mmol. l(-1)) was significantly higher (P <.05) in the heparin trial. Pre-exercise concentration of plasma triacylglycerol (TG), blood glycerol, glucose, oxygen consumption (VO(2)) and respiratory exchange ratio (RER) were not significantly different between heparin and control trials. During exercise, plasma NEFA and blood glycerol concentrations were significantly higher (P <.05) in the heparin trial, and levels of plasma TG and glucose were not different between trials. Over the exercise period rectal temperature, mean skin temperature, VO(2), RER, and heart rate (HR) were not different between the 2 trials. Gross energy expenditure of cycling (control, 3.3 +/- 0.1 MJ; heparin 3.3 +/- 0.1 MJ), the oxidation rates of fat (control, 0.67 +/- 0.05 g. min(-1); heparin, 0.71 +/- 0.06 g. min(-1)) and carbohydrate (CHO) (control, 1.68 +/- 0.04 g.min(-1); heparin, 1.62 +/- 0.17 g. min(-1)) and the proportion of energy derived from fat (control, 43 +/- 4%; heparin trial, 44 +/- 9%) and CHO (control, 57 +/- 4%; heparin trial, 56 +/- 4%) were not different between the 2 trials. These findings suggest that despite increased availability of plasma NEFA, the pattern of substrate oxidation during exercise in cold temperatures does not change. This implies that uncoupling between the availability and oxidation of plasma NEFA may be a mechanism involved in the reduced oxidation of fat seen during cold exposure. Further research is needed on the utilization of intramuscular TG and circulating plasma TG-rich lipoproteins in the cold.


Subject(s)
Cold Temperature , Exercise/physiology , Fatty Acids, Nonesterified/blood , Adult , Algorithms , Anaerobic Threshold/physiology , Blood Gas Analysis , Blood Glucose/metabolism , Body Temperature/physiology , Carbohydrate Metabolism , Exercise Test , Fats/metabolism , Glycerol/blood , Hematocrit , Hemoglobins/metabolism , Humans , Kinetics , Male , Muscle, Skeletal/physiology , Oxidation-Reduction , Triglycerides/blood
13.
Med Sci Sports Exerc ; 34(5): 774-9, 2002 May.
Article in English | MEDLINE | ID: mdl-11984294

ABSTRACT

PURPOSE: The influence of cold air exposure on fuel utilization during prolonged cycle exercise was investigated. METHODS: Nine male subjects cycled for 90 min in ambient temperatures of -10 degrees C, 0 degrees C, 10 degrees C, and 20 degrees C. External work performed between conditions was constant. Mean oxygen consumption (VO2) over the 90 min in the 20 degrees C trial corresponded to 64 +/- 5.8% VO2peak. RESULTS: Although mean skin temperature was different between trials (P < 0.05), rectal temperatures were not different. At -10 degrees C and 0 degrees C, the respiratory exchange ratio was higher compared with 10 degrees C and 20 degrees C (0.98 +/- 0.01 and 0.97 +/- 0.01 vs 0.92 +/- 0.01 and 0.91 +/- 0.01; P < 0.05). The associated rates of fat oxidation were lower at -10 degrees C and 0 degrees C compared with 10 degrees C and 20 degrees C (0.15 +/- 0.06 and 0.17 +/- 0.06 vs 0.35 +/- 0.06 and 0.40 +/- 0.04 g.min-1; P < 0.05). Blood glycerol was lower at -10 degrees C and 0 degrees C compared with 20 degrees C (P < 0.05); mean values were 0.13 +/- 0.0, 0.13 +/- 0.0, and 0.18 +/- 0.0 mmol.L-1 for the -10 degrees C, 0 degrees C, and 20 degrees C trials, respectively. Mean VO2 was lower in the -10 degrees C trial than the 20 degrees C trial (2.53 +/- 0.06 vs 2.77 +/- 0.09. L.min-1; P < 0.05). Mean blood glucose concentrations were lower at -10 degrees C than 20 degrees C (4.9 +/- 0.2 vs 5.3 +/- 0.1 mmol.L-1; P < 0.05). Although plasma epinephrine concentrations were greater during the 20 degrees C trial compared with all other trials (P < 0.05), plasma norepinephrine did not differ between trials. CONCLUSION: The diminished fat oxidation at colder temperatures potentially reflects a reduction in lipolysis and/or mobilization of FFA or impairment in the oxidative capacity of the muscle.


Subject(s)
Adipose Tissue/metabolism , Exercise/physiology , Lipid Metabolism , Adult , Anaerobic Threshold/physiology , Analysis of Variance , Bicycling , Body Temperature , Cold Climate , Energy Metabolism , Fatty Acids, Nonesterified/blood , Heart Rate , Humans , Lipids/blood , Male , Pulmonary Gas Exchange , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...