Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Chem Biol ; 31(2): 349-360.e6, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37858335

ABSTRACT

As a key regulator of the innate immune system, the NLRP3 inflammasome responds to a variety of environmental insults through activation of caspase-1 and release of the proinflammatory cytokines IL-1ß and IL-18. Aberrant NLRP3 inflammasome function is implicated in numerous inflammatory diseases, spurring drug discovery efforts at NLRP3 as a therapeutic target. A diverse array of small molecules is undergoing preclinical/clinical evaluation with a reported mode of action involving direct modulation of the NLRP3 pathway. However, for a subset of these ligands the functional link between live-cell target engagement and pathway inhibition has yet to be fully established. Herein we present a cohort of mechanistic assays to both query direct NLRP3 engagement in cells, and functionally interrogate different nodes of NLRP3 pathway activity. This system enabled the stratification of potency for five confirmed NLRP3 inhibitors, and identification of two reported NLRP3 inhibitors that failed to demonstrate direct pathway antagonism.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Cytokines/metabolism , Interleukin-1beta/metabolism
2.
Methods Mol Biol ; 2612: 195-224, 2023.
Article in English | MEDLINE | ID: mdl-36795369

ABSTRACT

Traditional immunoassays to detect secreted or intracellular proteins can be tedious, require multiple washing steps, and are not easily adaptable to a high-throughput screening (HTS) format. To overcome these limitations, we developed Lumit, a novel immunoassay approach that combines bioluminescent enzyme subunit complementation technology and immunodetection. This bioluminescent immunoassay does not require washes or liquid transfers and takes less than 2 h to complete in a homogeneous "Add and Read" format. In this chapter, we describe step-by-step protocols to create Lumit immunoassays for the detection of (1) secreted cytokines from cells, (2) phosphorylation levels of a specific signaling pathway node protein, and (3) a biochemical protein-protein interaction between a viral surface protein and its human receptor.


Subject(s)
Cytokines , Immunologic Tests , Humans , Immunoassay/methods
3.
ACS Chem Biol ; 17(8): 2179-2187, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35862857

ABSTRACT

Sensitive and selective detection assays are essential for the accurate measurement of analytes in both clinical and research laboratories. Immunoassays that rely on nonoverlapping antibodies directed against the same target analyte (e.g., sandwich enzyme-linked immunosorbent assays (ELISAs)) are commonly used molecular detection technologies. Use of split enzyme reporters has simplified the workflow for these traditionally complex assays. However, identifying functional antibody pairs for a given target analyte can be cumbersome, as it generally involves generating and screening panels of antibodies conjugated to reporters. Accordingly, we sought a faster and easier reporter conjugation strategy to streamline antibody screening. We describe here the development of such a method that is based on an optimized ternary NanoLuc luciferase. This bioluminescence complementation system is comprised of a reagent-based thermally stable polypeptide (LgTrip) and two small peptide tags (ß9 and ß10) with lysine-reactive handles for direct conjugation onto antibodies. These reagents enable fast, single-step, wash-free antibody labeling and sensitive functional screening. Simplicity, speed, and utility of the one-pot labeling technology are demonstrated in screening antibody pairs for the analyte interleukin-4. The screen resulted in the rapid development of a sensitive homogeneous immunoassay for this clinically relevant cytokine.


Subject(s)
Antibodies , Peptides , Enzyme-Linked Immunosorbent Assay/methods , Immunoassay/methods , Indicators and Reagents , Luciferases
4.
Methods Cell Biol ; 165: 39-57, 2021.
Article in English | MEDLINE | ID: mdl-34311870

ABSTRACT

Autophagy is an important intracellular pathway for the degradation of superfluous or harmful subcellular materials, thereby playing a critical role in the maintenance of cell health under normal and stress-related conditions. Researchers interrogating autophagic activity in mammalian cell lines often leverage complementary assay technologies to confirm observations. The Autophagy LC3 HiBiT Reporter assay system utilizes a tandem reporter module, HiBiT-HaloTag, fused to a key marker of autophagic activity, LC3B protein, to enable multiple, cell-based assay modalities. This novel autophagy reporter expressed in a single cell line supports (a) a bioluminescent, homogeneous, plate-reader assay for rapid and quantitative assessment of changes in the level of the LC3-based reporter, (b) a fluorescence-based imaging approach to monitor reporter subcellular distribution in live cells, and (c) an antibody-free, protein blotting method to detect the relative amounts of the LC3-I and LC-II forms of the reporter associated with modulation of autophagic flux. Here we detail protocols for all three assay modalities applied to a U2OS human osteosarcoma cell line stably expressing the novel autophagy reporter, enabling the identification of modulators of autophagic activity and subsequent confirmation of mechanism of action.


Subject(s)
Autophagy , Autophagy/genetics , Biological Assay , Blotting, Western , Cell Line , Humans
5.
Anal Biochem ; 628: 114286, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34119487

ABSTRACT

Extracellular ATP (eATP) is a potent damage associated molecular pattern (DAMP) molecule known to exert profound effects on the innate and adaptive immune responses. As such, it has become an important biomarker for studying means to pro-actively modulate inflammatory processes. Unfortunately, traditional methodologies employed for measuring eATP require cumbersome supernatant sampling, onerous time courses, or unnecessary duplication of effort. Here we describe a new reagent that is tolerable to test cells in extended exposures and enables a fully homogeneous assay method for real-time determinations of extracellular ATP levels. The reagent is introduced into assay plates containing cells at the time of stimulus introduction. The real-time feature of the format allows for sensitive, continuous accounting of eATP levels in the test model over at least 24 h. This work details our efforts to create and characterize this new reagent and to validate utility by demonstrating its use with multiple cell lines and chemically diverse eATP induction stimuli.


Subject(s)
Adenosine Triphosphate/analysis , Humans , Time Factors , Tumor Cells, Cultured
6.
Anal Chem ; 93(12): 5177-5184, 2021 03 30.
Article in English | MEDLINE | ID: mdl-33730483

ABSTRACT

Enzyme-linked immunosorbent assays (ELISAs) are used extensively for the detection and quantification of biomolecules in clinical diagnostics as well as in basic research. Although broadly used, the inherent complexities of ELISAs preclude their utility for straightforward point-of-need testing, where speed and simplicity are essential. With this in mind, we developed a bioluminescence-based immunoassay format that provides a sensitive and simple method for detecting biomolecules in clinical samples. We utilized a ternary, split-NanoLuc luciferase complementation reporter consisting of two small peptides (11mer, 13mer) and a 17 kDa polypeptide combined with a luminogenic substrate to create a complete, shelf-stable add-and-read assay detection reagent. Directed evolution was used to optimize reporter constituent sequences to impart chemical and thermal stability, as well as solubility, while formulation optimization was applied to stabilize an all-in-one reagent that can be reconstituted in aqueous buffers or sample matrices. The result of these efforts is a robust, first-generation bioluminescence-based homogenous immunoassay reporter platform where all assay components can be configured into a stable lyophilized cake, supporting homogeneous, rapid, and sensitive one-step biomolecule quantification in complex human samples. This technology represents a promising alternative immunoassay format with significant potential to bring critical diagnostic molecular detection testing closer to the point-of-need.


Subject(s)
Immunologic Tests , Enzyme-Linked Immunosorbent Assay , Humans , Immunoassay , Indicators and Reagents , Luciferases/genetics
7.
Apoptosis ; 24(1-2): 184-197, 2019 02.
Article in English | MEDLINE | ID: mdl-30498998

ABSTRACT

Apoptosis is an important and necessary cell death program which promotes homeostasis and organismal survival. When dysregulated, however, it can lead to a myriad of pathologies from neurodegenerative diseases to cancer. Apoptosis is therefore the subject of intense study aimed at dissecting its pathways and molecular mechanisms. Although many assay methods exist for confirming whether an apoptotic response has occurred in vitro, most methods are destructive and involve laborious operator effort or specialized instrumentation. Here we describe a real-time, no-wash, microplate method which utilizes recombinant annexin V fusion proteins containing evolved binary subunits of NanoBiT™ luciferase. The fusion proteins, a time-released enzymatic substrate, a necrosis detection dye and exogenous calcium ions are delivered via an optimized and physiologically inert reagent directly to cells in culture at the time of treatment or dosing. Luminescent signals proportional to phosphatidylserine (PS) exposure and fluorescent signals generated as a result of loss of membrane integrity are then collected using a standard multimode plate reader at scheduled intervals over the exposure. The resulting luminescent and fluorescent data are then used to define the kinetics and magnitude of an apoptotic response. This study details our efforts to develop, characterize, and demonstrate the features of the assay by providing relevant examples from diverse cell models for programmed cell death.


Subject(s)
Annexin A5/chemistry , Apoptosis , Luminescent Measurements/methods , A549 Cells , Annexin A5/metabolism , Cell Death , Cell Line, Tumor , Computer Systems , Flow Cytometry/methods , HeLa Cells , Hep G2 Cells , Humans , K562 Cells , Molecular Imaging/methods , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
8.
J Immunol Methods ; 447: 1-13, 2017 08.
Article in English | MEDLINE | ID: mdl-28268194

ABSTRACT

Inflammasomes are protein complexes induced by diverse inflammatory stimuli that activate caspase-1, resulting in the processing and release of cytokines, IL-1ß and IL-18, and pyroptosis, an immunogenic form of cell death. To provide a homogeneous method for detecting caspase-1 activity, we developed a bioluminescent, plate-based assay that combines a substrate, Z-WEHD-aminoluciferin, with a thermostable luciferase in an optimized lytic reagent added directly to cultured cells. Assay specificity for caspase-1 is conferred by inclusion of a proteasome inhibitor in the lytic reagent and by use of a caspase-1 inhibitor to confirm activity. This approach enables a specific and rapid determination of caspase-1 activation. Caspase-1 activity is stable in the reagent thereby providing assay convenience and flexibility. Using this assay system, caspase-1 activation has been determined in THP-1 cells following treatment with α-hemolysin, LPS, nigericin, gramicidin, MSU, R848, Pam3CSK4, and flagellin. Caspase-1 activation has also been demonstrated in treated J774A.1 mouse macrophages, bone marrow-derived macrophages (BMDMs) from mice, as well as in human primary monocytes. Caspase-1 activity was not detected in treated BMDMs derived from Casp1-/- mice, further confirming the specificity of the assay. Caspase-1 activity can be measured directly in cultured cells using the lytic reagent, or caspase-1 activity released into medium can be monitored by assay of transferred supernatant. The caspase-1 assay can be multiplexed with other assays to monitor additional parameters from the same cells, such as IL-1ß release or cell death. The caspase-1 assay in combination with a sensitive real-time monitor of cell death allows one to accurately establish pyroptosis. This assay system provides a rapid, convenient, and flexible method to specifically and quantitatively monitor caspase-1 activation in cells in a plate-based format. This will allow a more efficient and effective assessment of inflammasome activation as well as enable high-throughput screening for inflammasome modulators.


Subject(s)
Caspase 1/metabolism , Inflammasomes/metabolism , Luminescent Measurements/methods , Monocytes/metabolism , Animals , Cell Line , Enzyme Activation , Humans , Luciferases/metabolism , Luminescent Measurements/instrumentation , Macrophages/drug effects , Macrophages/metabolism , Mice , Monocytes/enzymology , Pyroptosis , Sensitivity and Specificity
9.
Nat Rev Drug Discov ; 5(4): 333-42, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16582877

ABSTRACT

The soaring incidence of type 2 diabetes has created pressure for new pharmaceutical strategies to treat this devastating disease. With much of the focus on overcoming insulin resistance, investigation has focused on finding ways to restore activation of the phosphatidylinositol 3'-kinase pathway, which is diminished in many patients with type 2 diabetes. Here we review the evidence that lipid phosphatases, specifically PTEN and SHIP2, attenuate this important insulin signalling pathway. Both in vivo and in vitro studies indicate their role in regulating whole-body energy metabolism, and possibly weight gain as well. The promise and challenges presented by this new class of drug discovery targets will also be discussed.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Enzyme Inhibitors/pharmacology , Hypoglycemic Agents/pharmacology , PTEN Phosphohydrolase/antagonists & inhibitors , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Animals , Diabetes Mellitus, Type 2/metabolism , Drug Design , Energy Metabolism/drug effects , Humans , Insulin/pharmacology , PTEN Phosphohydrolase/physiology , Phosphatidylinositol 3-Kinases/physiology , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases , Phosphoric Monoester Hydrolases/physiology , Receptor, Insulin/physiology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...