Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Chem Biol ; 31(2): 349-360.e6, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37858335

ABSTRACT

As a key regulator of the innate immune system, the NLRP3 inflammasome responds to a variety of environmental insults through activation of caspase-1 and release of the proinflammatory cytokines IL-1ß and IL-18. Aberrant NLRP3 inflammasome function is implicated in numerous inflammatory diseases, spurring drug discovery efforts at NLRP3 as a therapeutic target. A diverse array of small molecules is undergoing preclinical/clinical evaluation with a reported mode of action involving direct modulation of the NLRP3 pathway. However, for a subset of these ligands the functional link between live-cell target engagement and pathway inhibition has yet to be fully established. Herein we present a cohort of mechanistic assays to both query direct NLRP3 engagement in cells, and functionally interrogate different nodes of NLRP3 pathway activity. This system enabled the stratification of potency for five confirmed NLRP3 inhibitors, and identification of two reported NLRP3 inhibitors that failed to demonstrate direct pathway antagonism.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Cytokines/metabolism , Interleukin-1beta/metabolism
2.
Methods Cell Biol ; 165: 39-57, 2021.
Article in English | MEDLINE | ID: mdl-34311870

ABSTRACT

Autophagy is an important intracellular pathway for the degradation of superfluous or harmful subcellular materials, thereby playing a critical role in the maintenance of cell health under normal and stress-related conditions. Researchers interrogating autophagic activity in mammalian cell lines often leverage complementary assay technologies to confirm observations. The Autophagy LC3 HiBiT Reporter assay system utilizes a tandem reporter module, HiBiT-HaloTag, fused to a key marker of autophagic activity, LC3B protein, to enable multiple, cell-based assay modalities. This novel autophagy reporter expressed in a single cell line supports (a) a bioluminescent, homogeneous, plate-reader assay for rapid and quantitative assessment of changes in the level of the LC3-based reporter, (b) a fluorescence-based imaging approach to monitor reporter subcellular distribution in live cells, and (c) an antibody-free, protein blotting method to detect the relative amounts of the LC3-I and LC-II forms of the reporter associated with modulation of autophagic flux. Here we detail protocols for all three assay modalities applied to a U2OS human osteosarcoma cell line stably expressing the novel autophagy reporter, enabling the identification of modulators of autophagic activity and subsequent confirmation of mechanism of action.


Subject(s)
Autophagy , Autophagy/genetics , Biological Assay , Blotting, Western , Cell Line , Humans
3.
Anal Biochem ; 628: 114286, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34119487

ABSTRACT

Extracellular ATP (eATP) is a potent damage associated molecular pattern (DAMP) molecule known to exert profound effects on the innate and adaptive immune responses. As such, it has become an important biomarker for studying means to pro-actively modulate inflammatory processes. Unfortunately, traditional methodologies employed for measuring eATP require cumbersome supernatant sampling, onerous time courses, or unnecessary duplication of effort. Here we describe a new reagent that is tolerable to test cells in extended exposures and enables a fully homogeneous assay method for real-time determinations of extracellular ATP levels. The reagent is introduced into assay plates containing cells at the time of stimulus introduction. The real-time feature of the format allows for sensitive, continuous accounting of eATP levels in the test model over at least 24 h. This work details our efforts to create and characterize this new reagent and to validate utility by demonstrating its use with multiple cell lines and chemically diverse eATP induction stimuli.


Subject(s)
Adenosine Triphosphate/analysis , Humans , Time Factors , Tumor Cells, Cultured
4.
Nat Rev Drug Discov ; 5(4): 333-42, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16582877

ABSTRACT

The soaring incidence of type 2 diabetes has created pressure for new pharmaceutical strategies to treat this devastating disease. With much of the focus on overcoming insulin resistance, investigation has focused on finding ways to restore activation of the phosphatidylinositol 3'-kinase pathway, which is diminished in many patients with type 2 diabetes. Here we review the evidence that lipid phosphatases, specifically PTEN and SHIP2, attenuate this important insulin signalling pathway. Both in vivo and in vitro studies indicate their role in regulating whole-body energy metabolism, and possibly weight gain as well. The promise and challenges presented by this new class of drug discovery targets will also be discussed.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Enzyme Inhibitors/pharmacology , Hypoglycemic Agents/pharmacology , PTEN Phosphohydrolase/antagonists & inhibitors , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Animals , Diabetes Mellitus, Type 2/metabolism , Drug Design , Energy Metabolism/drug effects , Humans , Insulin/pharmacology , PTEN Phosphohydrolase/physiology , Phosphatidylinositol 3-Kinases/physiology , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases , Phosphoric Monoester Hydrolases/physiology , Receptor, Insulin/physiology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...