Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Eur J Drug Metab Pharmacokinet ; 49(2): 219-228, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38332426

ABSTRACT

BACKGROUND AND OBJECTIVE: Topical clindamycin formulations are widely used in clinical practice, but poor bioavailability and restricted skin penetration considerably limit their therapeutic efficacy. Penetration enhancement represents a promising and rational strategy to overcome the drawbacks of conventional topical pharmaceutical formulations. We aim to assess the influence of cholic acid (CA) and deoxycholic acid (DCA) on the permeability of clindamycin hydrochloride by performing the in vitro skin parallel artificial membrane permeability assay (skin-PAMPA) at two relevant pH values (5.5 and 6.5) and the interactions of tested substances with skin ATP-binding cassette (ABC) transporters in silico. METHODS: After the incubation period, the clindamycin hydrochloride concentrations in both compartments were determined spectrophotometrically, and the apparent permeability coefficients (Papp) were calculated. Vienna LiverTox web service was used to predict the interactions of clindamycin and bile acids with potential drug transporters located in human skin. RESULTS: Both CA and DCA at the highest studied concentration of 100 µM in the tested solutions increased the skin-PAMPA membrane permeability of clindamycin hydrochloride. This effect was more pronounced for CA and at a higher studied pH value of 6.5, which is characteristic of most dermatological indications treated with topical clindamycin preparations. Clindamycin transport may also be mediated by ABC transporters located in skin and facilitated in the presence of bile acids. CONCLUSIONS: The results of this study provide a solid foundation for further research directed at the improvement of topical formulations using bile acids as penetration-enhancing excipients, as well as the therapeutic efficacy of clindamycin hydrochloride.


Subject(s)
Bile Acids and Salts , Clindamycin , Humans , Clindamycin/pharmacology , Clindamycin/metabolism , Bile Acids and Salts/metabolism , Skin/metabolism , Skin Absorption , Cholic Acid , Permeability
2.
Front Pharmacol ; 14: 1111115, 2023.
Article in English | MEDLINE | ID: mdl-36843926

ABSTRACT

Introduction: Although pharmacogenetics and pharmacogenomics have been at the forefront of research aimed at finding novel personalized therapies, the focus of research has recently extended to the potential of intestinal microbiota to affect drug efficacy. Complex interplay of gut microbiota with bile acids may have significant repercussions on drug pharmacokinetics. However, far too little attention has been paid to the potential implication of gut microbiota and bile acids in simvastatin response which is characterized by large interindividual variations. The Aim: In order to gain more insight into the underlying mechanism and its contribution in assessing the clinical outcome, the aim of our study was to examine simvastatin bioaccumulation and biotransformation in probiotic bacteria and the effect of bile acids on simvastatin bioaccumulation in in vitro conditions. Materials and methods: Samples with simvastatin, probiotic bacteria and three different bile acids were incubated at anaerobic conditions at 37°C for 24 h. Extracellular and intracellular medium samples were collected and prepared for the LC-MS analysis at predetermined time points (0 min, 15 min, 1 h, 2 h, 4 h, 6 h, 24 h). The concentrations of simvastatin were analyzed by LC-MS/MS. Potential biotransformation pathways were analyzed using a bioinformatics approach in correlation with experimental assay. Results: During the incubation, simvastatin was transported into bacteria cells leading to a drug bioaccumulation over the time, which was augmented upon addition of bile acids after 24 h. A decrease of total drug level during the incubation indicates that the drug is partly biotransformed by bacterial enzymes. According to the results of bioinformatics analysis, the lactone ring is the most susceptible to metabolic changes and the most likely reactions include ester hydrolysis followed by hydroxylation. Conclusion: Results of our study reveal that bioaccumulation and biotransformation of simvastatin by intestinal bacteria might be the underlying mechanisms of altered simvastatin bioavailability and therapeutic effect. Since this study is based only on selected bacterial strains in vitro, further more in-depth research is needed in order to elicit completely the contribution of complex drug-microbiota-bile acids interactions to overall clinical response of simvastatin which could ultimately lead to novel approaches for the personalized lipid-lowering therapy.

3.
Front Pharmacol ; 13: 879170, 2022.
Article in English | MEDLINE | ID: mdl-35450035

ABSTRACT

Despite the growing number of new drugs approved for the treatment of inflammatory bowel disease (IBD), the long-term clinical use of thiopurine therapy and the well-known properties of conventional drugs including azathioprine have made their place in IBD therapy extremely valuable. Despite the fact that thiopurine S-methyltransferase (TPMT) polymorphism has been recognized as a major cause of the interindividual variability in the azathioprine response, recent evidence suggests that there might be some yet unknown causes which complicate dosing strategies causing either failure of therapy or toxicity. Increasing evidence suggests that gut microbiota, with its ability to release microbial enzymes, affects the pharmacokinetics of numerous drugs and subsequently drastically alters clinical effectiveness. Azathioprine, as an orally administered drug which has a complex metabolic pathway, is the prime illustrative candidate for such microbial metabolism of drugs. Comprehensive databases on microbial drug-metabolizing enzymes have not yet been generated. This study provides insights into the current evidence on microbiota-mediated metabolism of azathioprine and systematically accumulates findings of bacteria that possess enzymes required for the azathioprine biotransformation. Additionally, it proposes concepts for the identification of gut bacteria species responsible for the metabolism of azathioprine that could aid in the prediction of dose-response effects, complementing pharmacogenetic approaches already applied in the optimization of thiopurine therapy of IBD. It would be of great importance to elucidate to what extent microbiota-mediated metabolism of azathioprine contributes to the drug outcomes in IBD patients which could facilitate the clinical implementation of novel tools for personalized thiopurine treatment of IBD.

4.
Eur J Drug Metab Pharmacokinet ; 47(1): 127-134, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34637107

ABSTRACT

BACKGROUND AND OBJECTIVE: High-dose methotrexate (HD-MTX) is the mainstream therapy of current acute lymphoblastic leukemia (ALL) regimens, but frequent intra- and interindividual differences in the clinical response to HD-MTX lead to chemotherapeutic interruption or discontinuation. The exact mechanism of transport across the cell membrane and the disposition of active methotrexate metabolites-methotrexate polyglutamates (MTXPGs)-are not well described in the literature. The aim of this study was to gain more insight into the plasma distribution of methotrexate and MTXPGs in pediatric patients with ALL and to clarify the obscure pathways of MTXPGs. METHODS: We prospectively measured the concentrations of MTXPG1-7 in plasma samples from three male pediatric patients treated with HD-MTX and leucovorin rescue according to the IC-BFM 2009 protocol using liquid chromatography-mass spectrometry (LC-MS). Blood samples were obtained at 24, 36, 42, and 48 h after the start of HD-MTX treatment. RESULTS: Noticeable plasma concentrations of MTXPGs with a 2.2-fold interpatient variability were detected. The highest interindividual variability in total plasma MTXPG concentration was observed at 36 h, and ranged from 13.78 to 30.82 µmol/L. Among all patients, the predominant polyglutamate types in relation to the total plasma MTXPG concentration at each time point were MTXPG3 (16.71-30.02%) and MTXPG5 (26.23-38.60%), while MTXPG7 was the least abundant MTXPG (3.22-5.02%). CONCLUSION: The presence of MTXPGs in plasma of patients with ALL could be related to the action of ABC efflux transporters on blood cells and hepatocytes resulting from the administration of high doses of methotrexate. This study may not draw definitive conclusions, but it does reduce uncertainty about the dynamics of methotrexate and its active metabolites, which may be of vital importance for achieving a clinical response.


Subject(s)
Antimetabolites, Antineoplastic/pharmacokinetics , Methotrexate/pharmacokinetics , Polyglutamic Acid/pharmacokinetics , Antimetabolites, Antineoplastic/administration & dosage , Antimetabolites, Antineoplastic/blood , Child , Chromatography, Liquid , Humans , Male , Methotrexate/administration & dosage , Methotrexate/blood , Plasma/metabolism , Polyglutamic Acid/administration & dosage , Polyglutamic Acid/blood , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Prospective Studies
6.
J Environ Manage ; 297: 113358, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34311248

ABSTRACT

The alkali treated subglebal tissue of the mosaic puffball (Handkea utriformis) (Sa) and Sa modified with hydroxyapatite (Sa-HAp), obtained by successive ionic layer adsorption and reaction (SILAR) method, were used for the removal of Pb2+, Cd2+ and Ni2+ from aqueous solution. The materials were characterized by FT-IR, Raman, SEM and EDS analysis and by determination of pHPZC. The adsorption performances of Sa and Sa-HAp were assessed in batch experiments at different pH, contact times, temperatures and mass of the adsorbent. Different models of adsorption isotherms were used, and the best fit was obtained with the Langmuir model. Maximum adsorption capacities of Sa towards Pb2+, Cd2+ and Ni2+ were 44.82, 15.54 and 17.21 mg g-1, while for Sa-HAp were 79.55, 52.59 and 45.01 mg g-1, respectively. Kinetic data were well fitted by a pseudo second-order model, while thermodynamic studies disclose spontaneous and endothermic adsorption process. The Sa-Hap was successfully regenerated with 1 M NaCl and after the fifth desorption cycle and 10 h achieved 82.9, 69.7 and 60.4 %, while for 0.5 M NaCl + 0.5 M NaOH and 1 h was 78.3, 64.1, 57.5 % of desorbed Pb2+, Cd2+ and Ni2+, respectively. The competitive study and results from a column system confirmed good applicability of Sa-HAp adsorbent.


Subject(s)
Agaricales , Metals, Heavy , Water Pollutants, Chemical , Adsorption , Hydrogen-Ion Concentration , Kinetics , Solutions , Spectroscopy, Fourier Transform Infrared , Thermodynamics , Water Pollutants, Chemical/analysis
7.
Eur J Pharm Sci ; 158: 105668, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33301903

ABSTRACT

Gut microbiota and bile acids possess the ability to modify absorption and pharmacokinetic profile of numerous drugs. Since the variability of gliclazide response in patients cannot be explained only by genetic factors, the influence of gut microbiota and bile acids should be considered. The aim of this study was to determine the effects of probiotic bacteria and bile acids on the gliclazide permeability. The permeability of gliclazide with and without probiotic bacteria and bile acids (cholic acid, CA and deoxycholic acid, DCA) was tested using in vitro PAMPA model, at three different pH values (5.8, 6.5 and 7.4). Concentrations of gliclazide were determined by HPLC analysis. The interactions of gliclazide and bile acids were also investigated by molecular mechanics calculations (MM2). Probiotic bacteria significantly increased the permeability of gliclazide across the PAMPA membrane at all observed pH values while the total amount of gliclazide during incubation with bacteria was significantly reduced at pH 7.4, which could be a consequence of partial metabolism of the drug by enzymes of probiotic bacteria. Bile acids decreased the permeability of gliclazide through PAMPA membrane, with more pronounced effects of DCA, by forming more stable complexes with gliclazide. Given that probiotic bacteria and bile acids are naturally present in the gut and that each individual has a specific bacterial fingerprint, future research should extend the explanation of their effect on the gliclazide bioavailability and therapy individualization in in vivo conditions.


Subject(s)
Gliclazide , Probiotics , Bacteria , Bile Acids and Salts , Humans , Permeability
8.
Pharmacol Res ; 146: 104333, 2019 08.
Article in English | MEDLINE | ID: mdl-31254667

ABSTRACT

Bile acids are endogenous emulsifiers synthesized from cholesterol having a peculiar amphiphilic structure. Appreciation of their beneficial effects on human health, recognized since ancient times, has expanded enormously since the discovery of their role as signaling molecules. Activation of farnesoid X receptor (FXR) and Takeda G-protein receptor-5 (TGR5) signaling pathways by bile acids, regulating glucose, lipid and energy metabolism, have become attractive avenue for metabolic syndrome treatment. Therefore, extensive effort has been directed into the research and synthesis of bile acid derivatives with improved pharmacokinetic properties and high potency and selectivity for these receptors. Minor modifications in the structure of bile acids and their derivatives may result in fine-tuning modulation of their biological functions, and most importantly, in an evasion of undesired effect. A great number of semisynthetic bile acid analogues have been designed and put in preclinical and clinical settings. Obeticholic acid (INT-747) has achieved the biggest clinical success so far being in use for the treatment of primary biliary cholangitis. This review summarizes and critically evaluates the key chemical modifications of bile acids resulting in development of novel semisynthetic derivatives as well as the current status of their preclinical and clinical evaluation in the treatment of metabolic syndrome, an aspect that is so far lacking in the scientific literature. Taking into account the balance between therapeutic benefits and potential adverse effects associated with specific structure and mechanism of action, recommendations for future studies are proposed.


Subject(s)
Bile Acids and Salts/pharmacology , Bile Acids and Salts/therapeutic use , Metabolic Syndrome/drug therapy , Animals , Humans , Metabolic Syndrome/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects
9.
Life Sci ; 202: 28-34, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29626529

ABSTRACT

AIMS: The present study was designed to compare the ameliorating potential of pre- and post-treatments with melatonin, a potent natural antioxidant, in the carbon tetrachloride-induced rat liver damage model by tracking changes in enzymatic and non-enzymatic liver tissue defense parameters, as well as in the occurring pathohistological changes. MAIN METHODS: Rats from two experimental groups were treated with melatonin before and after CCl4 administration, while the controls, negative and positive, received vehicle/melatonin and CCl4, respectively. Serum levels of transaminases, alkaline phosphates, γ-GT, bilirubin, and albumin, as well as a wide panel of oxidative stress-related parameters in liver tissue, were determined in all experimental animals. Liver tissue specimens were stained with hematoxylin and eosin and further evaluated for morphological changes. KEY FINDINGS: Both pre- and post-treatment with melatonin prevented a CCl4-induced increase in serum (ALT, AST, and γ-GT) and tissue (MDA and XO) liver damage markers and a decrease in the tissue total antioxidant capacity, in both enzymatic and non-enzymatic systems. The intensity of pathological changes, hepatocyte vacuolar degeneration, necrosis and inflammatory cell infiltration, was suppressed by the treatment with melatonin. SIGNIFICANCE: In conclusion, melatonin, especially as a post-intoxication treatment, attenuated CCl4-induced liver oxidative damage, increased liver antioxidant capacities and improved liver microscopic appearance. The results are of interest due to the great protective potential of melatonin that was even demonstrated to be stronger if applied after the tissue damage.


Subject(s)
Antioxidants/therapeutic use , Carbon Tetrachloride Poisoning/drug therapy , Carbon Tetrachloride Poisoning/pathology , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/pathology , Liver/pathology , Melatonin/therapeutic use , Alanine Transaminase/metabolism , Animals , Aspartate Aminotransferases/metabolism , Carbon Tetrachloride Poisoning/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Hepatocytes/metabolism , Hepatocytes/pathology , Inflammation/blood , Liver/metabolism , Liver Function Tests , Male , Malondialdehyde/blood , Oxidative Stress/drug effects , Rats , Rats, Wistar , Xanthine Oxidase/blood , gamma-Glutamyltransferase/metabolism
10.
Environ Sci Pollut Res Int ; 24(1): 628-643, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27743328

ABSTRACT

Natural (SEP) and partially acid-activated (AAS) sepiolites were used to prepare composites with nanoscale zerovalent iron (nZVI) at different (SEP or AAS)/nZVI ratios in order to achieve the best nZVI dispersibility and the highest adsorption capacity for Cd2+. Despite the higher surface area and pore volume of AAS, better nZVI dispersibility was achieved by using SEP as the support. On the other hand, a lower oxidation degree was achieved during the synthesis using AAS. X-ray photoelectron spectroscopy (XPS) analysis of the composite with the best nZVI dispersibility, before and after Cd2+ adsorption, confirmed that the surface of the nZVI was composed of oxidized iron species. Metallic iron was not present on the surface, but it was detected in the subsurface region after sputtering. The content of zerovalent iron decreased after Cd2+ adsorption as a result of iron oxidation during Cd2+ adsorption. The XPS depth profile showed that cadmium was present not only at the surface of the composite but also in the subsurface region. The adsorption isotherms for Cd2+ confirmed that the presence of SEP and AAS decreased the agglomeration of the nZVI particles in comparison to the pure nZVI, which provided a higher adsorption capacity. The results showed that the prevention of both aggregation and oxidation during the synthesis was necessary for obtaining an SEP/AAS-nZVI composite with a high adsorption capacity, but oxidation during adsorption was beneficial for Cd2+ removal. The formation of strong bonds between Cd2+ and the adsorbents sites of different energy until monolayer formation was proposed according to modeling of the adsorption isotherms.


Subject(s)
Cadmium/chemistry , Iron/chemistry , Magnesium Silicates/chemistry , Metal Nanoparticles/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Oxidation-Reduction , Photoelectron Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...