Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 11: 288, 2020.
Article in English | MEDLINE | ID: mdl-32351399

ABSTRACT

The molecular organization of the membrane of the red blood cell controls cell morphology and function and is thereby a main determinant of red blood cell homeostasis in the circulation. The role of membrane organization is prominently reflected in red blood cell deformation and aggregation. However, there is little knowledge on whether they are controlled by the same membrane property and if so, to what extent. To address the potential interdependence of these two parameters, we measured deformation and aggregation in a variety of physiological as well as pathological conditions. As a first step, we correlated a number of deformability and aggregation parameters in red blood cells from healthy donors, which we obtained in the course of our studies on red blood cell homeostasis in health and disease. This analysis yielded some statistically significant correlations. Also, we found that most of these correlations were absent in misshapen red blood cells that have an inborn defect in the interaction between the membrane and the cytoskeleton. The observations suggest that deformability and aggregation share at least one common, membrane-related molecular mechanism. Together with data obtained after treatment with various agents known to affect membrane organization in vitro, our findings suggest that a phosphorylation-controlled interaction between the cytoskeleton and the integral membrane protein band 3 is part of the membrane-centered mechanism that plays a role in deformability as well as aggregation.

2.
Artif Organs ; 44(8): 892-899, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32187389

ABSTRACT

Extracorporeal circulation is accompanied by changes in red blood cell morphology and structural integrity that affect cell function and survival, and thereby may contribute to the various side effects of heart-lung machine-assisted surgery. Our main objectives were to determine the effect of circulation of red blood cells in a stand-alone extracorporeal circuit on several parameters that are known to be affected by, as well as contribute to red blood cell aging. As a source of RBCs, we employed blood bank storage units of different ages. In order to assess the relevance of our in vitro observations for the characterization of extracorporal circulation technology, we compared these changes in those of patients undergoing extracorporeal circulation-assisted cardiac surgery. Our results show that circulation in a heart-lung machine is accompanied by changes in red blood cell volume, an increase in osmotic fragility, changes in deformability and aggregation behavior, and alterations in the exposure of phosphatidylserine and in microvesicle generation. RBCs from 1-week-old concentrates showed the highest similarities with the in vivo situation. These changes in key characteristics of the red blood cell aging process likely increase the susceptibility of red blood cells to the various mechanical, osmotic, and immunological stress conditions encountered during and after surgery in the patient's circulation, and thereby contribute to the side effects of surgery. Thus, aging-related parameters in red blood cell structure and function provide a foundation for the validation and improvement of extracorporeal circulation technology.


Subject(s)
Erythrocytes/physiology , Heart-Lung Machine/adverse effects , Aged , Cardiac Surgical Procedures/adverse effects , Erythrocyte Aggregation/physiology , Erythrocyte Deformability/physiology , Erythrocyte Volume , Erythrocytes/pathology , Female , Hemolysis , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...