Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38793913

ABSTRACT

The purpose of this paper is to demonstrate a new discovery regarding the interaction between materials and very low radio frequencies. Specifically, we observed a feedback response on an inertia active sensor when specific frequencies (around 2-4 kHz) are used to irradiate targeted pharmaceutical samples like aspirin or paracetamol drugs. The characteristics of this phenomenon, such as excitation and relaxation time, the relation between deceleration and a material's quantity, and signal amplitude, are presented and analyzed. Although the underlying physics of this phenomenon is not yet known, we have shown that it has potential applications in remote identification of compounds, detection, and location sensing, as well as identifying substances that exist in plants without the need for any processing. This method is fast, accurate, low-cost, non-destructive, and non-invasive, making it a valuable area for further research that could yield spectacular results in the future.


Subject(s)
Acetaminophen , Acetaminophen/analysis , Acetaminophen/chemistry , Electromagnetic Phenomena , Aspirin/chemistry , Aspirin/analysis , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/analysis , Radio Waves
2.
Cancers (Basel) ; 16(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38672636

ABSTRACT

Cancer is a life-threatening disease and one of the leading causes of death worldwide. Despite significant advancements in therapeutic options, most available anti-cancer agents have limited efficacy. In this context, natural compounds with diverse chemical structures have been investigated for their multimodal anti-cancer properties. Curcumin is a polyphenol isolated from the rhizomes of Curcuma longa and has been widely studied for its anti-inflammatory, anti-oxidant, and anti-cancer effects. Curcumin acts on the regulation of different aspects of cancer development, including initiation, metastasis, angiogenesis, and progression. The phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) pathway is a key target in cancer therapy, since it is implicated in initiation, proliferation, and cancer cell survival. Curcumin has been found to inhibit the PI3K/Akt pathway in tumor cells, primarily via the regulation of different key mediators, including growth factors, protein kinases, and cytokines. This review presents the therapeutic potential of curcumin in different malignancies, such as glioblastoma, prostate and breast cancer, and head and neck cancers, through the targeting of the PI3K/Akt signaling pathway.

3.
Biomol Concepts ; 15(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38345457

ABSTRACT

5-Hydroxy-3',4',6,7-tetramethoxyflavone (TMF) is a plant-origin flavone known for its anti-cancer properties. In the present study, the cytotoxic effect of TMF was evaluated in the U87MG and T98G glioblastoma (GBM) cell lines. The effect of TMF on cell viability was assessed with trypan blue exclusion assay and crystal violet staining. In addition, flow cytometry was performed to examine its effect on the different phases of the cell cycle, and in vitro scratch wound assay assessed the migratory capacity of the treated cells. Furthermore, the effect of in vitro radiotherapy was also evaluated with a combination of TMF and radiation. In both cell lines, TMF treatment resulted in G0/G1 cell cycle arrest, reduced cell viability, and reduced cell migratory capacity. In contrast, there was an antagonistic property of TMF treatment with radiotherapy. These results demonstrated the antineoplastic effect of TMF in GBM cells in vitro, but the antagonistic effect with radiotherapy indicated that TMF should be further evaluated for its possible antitumor role post-radiotherapy.


Subject(s)
Antineoplastic Agents , Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/radiotherapy , Glioblastoma/metabolism , Cell Line, Tumor , Brain Neoplasms/drug therapy , Brain Neoplasms/radiotherapy , Brain Neoplasms/metabolism , Flavonoids/pharmacology , Flavonoids/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Proliferation , Apoptosis , Cell Survival
4.
Int J Mol Sci ; 25(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38396771

ABSTRACT

To date, many potent compounds have been found which are derived from plants and herbs and possess anticancer properties due to their antioxidant effects. 9″-Lithospermic acid methyl ester is an effective natural compound derived from the Thymus thracicus Velen. It has been proven that this compound has substantial properties in different diseases, but its effects in cancer have not been thoroughly evaluated. The aim of this work was to study the effects of 9″-Lithospermic acid methyl ester (9″-methyl lithospermate) in U87 and T98 glioblastoma cell lines. Its effects on cellular viability were assessed via Trypan Blue and Crystal Violet stains, the cell cycle analysis through flow cytometry, and cell migration by employing the scratch wound healing assay. The results demonstrated that 9″-methyl lithospermate was able to inhibit cellular proliferation, induce cellular death, and inhibit cell migration. Furthermore, these results were intensified by the addition of temozolomide, the most prominent chemotherapeutic drug in glioblastoma tumors. Further studies are needed to reproduce these findings in animal models and investigate if 9″-lithospermic acid methyl ester represents a potential new therapeutic addition for gliomas.


Subject(s)
Antineoplastic Agents , Benzofurans , Brain Neoplasms , Depsides , Glioblastoma , Animals , Glioblastoma/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Temozolomide/pharmacology , Benzofurans/pharmacology , Cell Proliferation , Cell Line, Tumor , Apoptosis , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology
5.
Int J Mol Sci ; 25(2)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38255889

ABSTRACT

The present work is the first report on the ingredients of the P. × commixta hybrid, a plant of the genus Phlomis. So far, thirty substances have been isolated by various chromatographic techniques and identified by spectroscopic methods, such as UV/Vis, NMR, GC-MS and LC-MS. The compounds are classified as flavonoids: naringenin, eriodyctiol, eriodyctiol-7-O-ß-D-glucoside, luteolin, luteolin-7-O-ß-D-glucoside, apigenin, apigenin-7-O-ß-D-glucoside, diosmetin-7-O-ß-D-glucoside, quercetin, hesperetin and quercetin-3-O-ß-D-glucoside; phenylpropanoids: martynoside, verbascoside, forsythoside B, echinacoside and allysonoside; chromene: 5,7-dihydroxychromone; phenolic acids: caffeic acid, p-hydroxybenzoic acid, chlorogenic acid, chlorogenic acid methyl ester, gallic acid, p-coumaric acid and vanillic acid; aliphatic hydrocarbon: docos-1-ene; steroids: brassicasterol and stigmasterol; a glucoside of allylic alcohol, 3-O-ß-D-apiofuranosyl-(1→6)-O-ß-D-glucopyranosyl-oct-1-ene-3-ol, was fully characterized as a natural product for the first time. Two tyrosol esters were also isolated: tyrosol lignocerate and tyrosol methyl ether palmitate, the latter one being isolated as a natural product for the first time. Moreover, the biological activities of the extracts from the different polarities of the roots, leaves and flowers were estimated for their cytotoxic potency. All root extracts tested showed a high cytotoxic activity against the Hep2c and RD cell lines.


Subject(s)
Biological Products , Phenylethyl Alcohol/analogs & derivatives , Phlomis , Apigenin , Luteolin , Quercetin , Glucosides
6.
Pharmaceutics ; 15(5)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37242625

ABSTRACT

This study aims at the isolation and structural determination of the secondary metabolites of the herbaceous perennial plant Achillea grandifolia Friv. (Asteraceae). The examination of the non-volatile content of the leaves and flowers of A. grandifolia afforded the isolation of sixteen secondary metabolites. On the basis of NMR spectra, the identified compounds included ten sesquiterpene lactones; three guaianolides-rupicolin A (1), rupicolin B (2), and (4S,6aS,9R,9aS,9bS)-4,6a,9-trihydroxy-9-methyl-3,6-dimethylene-3a,4,5,6,6a,9,9a,9b-octahydro-3H-azuleno [4,5-b]furan-2-one (3); two eudesmanolides-artecalin (4) and ridentin B (5); two sesquiterpene methyl esters-(1S,2S,4αR,5R,8R,8αS)-decahydro-1,5,8-trihydroxy-4α,8-dimethyl-methylene-2-naphthaleneacetic acid methylester (6) and 1ß, 3ß, 6α-trihydroxycostic acid methyl ester (7); three secoguaianolides-acrifolide (8), arteludovicinolide A (9), and lingustolide A (10); and an iridoid-loliolide (11). Moreover, five known flavonoids, i.e., apigenin, luteolin, eupatolitin, apigenin 7-O-glucoside, and luteolin 7-O-glucoside (12-16) were also purified from the aerial parts of the plant material. We also investigated the effect of rupicolin A (1) and B (2) (main compounds) on U87MG and T98G glioblastoma cell lines. An MTT assay was performed to define cytotoxic effects and to calculate the IC50, while flow cytometry was employed to analyze the cell cycle. The IC50 values of reduced viability during the 48 h treatment for compound (1) and (2) were 38 µM and 64 µM for the U87MG cells and 15 µM and 26 µM for the T98G cells, respectively. Both rupicolin A and B induced a G2/M cell cycle arrest.

7.
Plants (Basel) ; 12(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37111924

ABSTRACT

European elder or elderberry (Sambucus nigra L., Viburnaceae) is a plant species with known high pharmaceutical and nutritional value. However, the Greek native germplasm of S. nigra has not been adequately utilized to date as in other regions. This study evaluates the fruit antioxidant potential (total phenolic content and radical scavenging activity) of wild-growing and cultivated germplasm of Greek S. nigra. In addition, nine cultivated Greek S. nigra genotypes were evaluated regarding the effects of fertilization (conventional and organic) on fruit phytochemical and physicochemical potential (total flavonoids, ascorbic acid content, pH, total soluble solids, and total acidity), as well as on the antioxidant potential (total phenolic content and radical scavenging activity) of fruits and leaves. Additionally, an analysis of macro- and micro-elements in the leaves of the cultivated germplasm was performed. The results demonstrated comparatively higher total phenolic contents of fruits of cultivated germplasm. The genotype was the decisive factor in the fruits' phytochemical potential and leaves' total phenolic content of cultivated S. nigra germplasm. Similarly, fertilization regime effects were found to be genotype-dependent, affecting fruit phytochemical and physicochemical attributes. The trace element analysis results were similar, with genotypes varying significantly in their concentrations of macro- and micro-elements. The current work builds on previous domestication attempts for Greek S. nigra, providing new data on the phytochemical potential of this important nutraceutical species.

8.
Plants (Basel) ; 12(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36904004

ABSTRACT

The snowy Mespilus, or serviceberry (Amelanchier ovalis Medik., Rosaceae) represents a neglected and underutilized small fruit tree species with high nutritional value. In this work, we present the results of a long-term study facilitating the sustainable exploitation of A. ovalis as a new germplasm resource from the Greek flora. Ten wild-growing population samples of A. ovalis have been collected from natural habitats in northern Greece. Asexual propagation trials on these materials delivered successful propagation (83.3% rooting) on a selected genotype via leafy cuttings of young, primary, non-lignified soft wood with the application of the rooting hormone. The ex situ cultivation potential of the selected genotype has been evaluated under distinct fertilization regimes in a pilot field trial. Three-year results of this ongoing trial have shown that A. ovalis does not require external nutrient enhancement to be established during its early stages since plant growth rates between conventional fertilization and control plants were similar for the first two years and higher compared to organic fertilization. Conventional fertilization delivered higher fresh fruit production in the third year, with higher fruit number and fruit size compared to organic fertilization and control plants. The phytochemical potential of the cultivated genotype was assessed via the total phenolic content and radical scavenging activity of separate extracts from leaves, twigs, flowers, and young fruits, which revealed that individual plant organs have strong antioxidant activity despite their moderate total phenolic content. The multifaceted approach applied herein has provided novel data that may set the framework for further applied research toward the sustainable agronomic exploitation of Greek A. ovalis as a diversified superfood crop.

9.
Plants (Basel) ; 12(4)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36840188

ABSTRACT

Plants from the genus Sideritis (Lamiaceae) have been widely used in folk medicine for a long time and consequently are a focus of the scientific community. Despite this interest, explicit data about the essential oils (EOs) of the Endangered Sideritis sipylea have not been readily available to date. In this study, we investigated the ecological preferences of Greek S. sipylea and the chemical composition of the essential oils of wild-growing S. sipylea populations from two Greek islands (S1: Samos, S2: Lesvos); we explored concomitant associations with environmental factors; and we assessed their (i) antioxidant potential (two tests), (ii) antimicrobial activity against six microbial and two fungal strains, and (iii) cytotoxic effect in two human and one murine cell lines. We compiled an ecological profile in R based on all known Greek localities of S. sipylea, outlining for the first time its preferences regarding temperature (3.48 ± 1.53 °C to 30.70 ± 1.11 °C) and the precipitation regimes (5.92 ± 2.33 mm to 136 ± 11.43 mm) shaping its natural occurrence in the wild. The chemical analysis (42 compounds in total) confirmed the domination of monoterpene hydrocarbons in both samples (with quantitative and qualitative differences) and identified 12 new constituents reported in S. sipylea for the first time (e.g., Bicyclogermacrene and Cumacrene). Dominant compounds in S1 (39 constituents) were ß-Myrcene (20.4%) followed by ß-caryophyllene (11.8%), bicyclogermacrene (7.1%), ß-pinene (6.3%), carvacrol (6.2%) and α-terpinene (6.1%), whereas in S2 (26 constituents) the main ones were α-pinene (37.3%), ß-pinene (15.1%) and sabinene (12.1%), followed by ß-caryophyllene (5.6%) and bicyclogermacrene (5.5%). The strong antioxidant capacity and cytotoxic activity of S. sipylea EOs are reported herein for the first time, while new insight is provided regarding their effect on bacterial and fungal strains (four ones originally tested herein). The biological activity analysis demonstrated variation among samples, with S2 being more potent than S1. Altogether, the results of the present study demonstrate the high biological potential of S. sipylea EOs with an interesting antioxidant capacity and antimicrobial and cytotoxic effects and reveal associations of natural chemodiversity with climatic factors.

10.
Plants (Basel) ; 12(3)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36771695

ABSTRACT

Various species of the genus Achillea L. (Asteraceae) are traditionally used worldwide for wound healing against diarrhea, flatulence, and abdominal pains, as diuretic and emmenagogue agents. In the present study, the essential oils (EOs) obtained separately from the leaves and inflorescences of wild-growing Achillea grandifolia Friv. from Mt. Menoikio and Mt. Pelion (Greece) were analyzed by Gas Chromatography-Mass Spectrometry. The major compounds found in EOs of A. grandifolia inflorescences from Mt. Menoikio were as follows: cis-thujone (36.9%), 1,8-cineole (11.9%), camphor (10.0%), ascaridole (7.3%), α-terpinene (6.4%), sabinene (4.1%), trans-thujone (3.6%), and cis-jasmone (3.4%). In leaves from Mt. Menoikio, they were as follows: cis-thujone (50.8%), 1,8-cineole (20.0%), trans-thujone (5.5%), camphor (5.5%), borneol (3.6%), and α-terpineol (3.1%). In inflorescences from Mt. Pelion, they were as follows: camphor (70.5%), camphene (5.9%), cis-jasmone (3.2%), bornyl acetate (3.2%). In leaves from Mt. Pelion, they were as follows: camphor (83.2%), camphene (3.9%), and borneol (3.7%). Subsequently, the samples were first time tested for their antioxidant activities with the interaction of EOs with DPPH (2,2-diphenyl-1-picrylhydrazyl) and their inhibition of lipid peroxidation, as well as for their anti-inflammatory activity through the soybean LOX (lipoxygenase) inhibition. All of the examined samples were found effective. A. grandifolia leaves presented the highest antioxidant potential according to the DPPH method, and the highest percentage of LOX inhibition. The study herein investigated for the first time the leaves and the inflorescences of A. grandifolia separately, and the results generally align with similar studies from neighboring countries (Turkey and Serbia) in terms of the yields and categorization of main EO compounds (oxygenated monoterpenes). However, the findings were not in agreement with previously studied Greek material, as a higher amount of cis-thujone and lower antioxidant activity are reported herein. Both the EOs of inflorescences and the leaves of the wild-growing population collected from Mt. Menoikio were characterized by a high quantity of cis-thujone (36.9% and 50.8%, respectively).

11.
Int J Mol Sci ; 24(4)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36835175

ABSTRACT

Glioblastoma is one of the most malignant and lethal forms of primary brain tumors in adults. Linearol, a kaurane diterpene isolated from different medicinal plants, including those of the genus Sideritis, has been found to possess significant anti-oxidant, anti-inflammatory and anti-microbial properties. In this study, we aimed to determine whether linearol could exhibit anti-glioma effects when given alone or in combination with radiotherapy in two human glioma cell lines, U87 and T98. Cell viability was examined with the Trypan Blue Exclusion assay, cell cycle distribution was tested with flow cytometry, and the synergistic effects of the combination treatment were analyzed with CompuSyn software. Linearol significantly suppressed cell proliferation and blocked cell cycle at the S phase. Furthermore, pretreatment of T98 cells with increasing linearol concentrations before exposure to 2 Gy irradiation decreased cell viability to a higher extent than linearol or radiation treatment alone, whereas in the U87 cells, an antagonistic relationship was observed between radiation and linearol. Moreover, linearol inhibited cell migration in both tested cell lines. Our results demonstrate for the first time that linearol is a promising anti-glioma agent and further studies are needed to fully understand the underlying mechanism of this effect.


Subject(s)
Brain Neoplasms , Diterpenes , Glioblastoma , Glioma , Humans , Glioblastoma/metabolism , Glioma/pathology , Diterpenes/therapeutic use , Cell Line , Cell Line, Tumor , Cell Proliferation/radiation effects , Brain Neoplasms/metabolism
12.
Plants (Basel) ; 12(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36679061

ABSTRACT

Thymus holosericeus Celak. (Lamiaceae) is a taxonomically isolated and endangered local endemic thyme species which is geographically isolated in four Ionian Islands (West Greece). The present study investigated the essential oil (EO) composition, the ecological preferences, and their correlations in three T. holosericeus wild-growing populations from Zakynthos (ΤH-Z), Cephalonia (ΤH-C) and Lefkada (ΤH-L). The variations in essential oil yield and the composition of T. holosericeus populations were evaluated using hydrodistillation, GC/MS, TLC and NMR analysis. The climatic conditions of each sample were organized and analyzed in RStudio with the raster package and in SPSS with Pearson's Canonical Correlation Analysis (CCA), respectively. The aerial parts of the plants varied in EO yields from 1.92 to 2.28% w/v. The analysis of EO constituents revealed noteworthy qualitative and quantitative inter-population variation. The composition of EOs revealed the presence of linalool (82.77%) and borneol (5.95%) as major compounds in ΤH-Z, while carvacrol (35.34%), geraniol (23.98%), linalool (14.37%), borneol (5.66%), thymol (4.27%) and p-cymene (4.08%) were the main compounds in ΤH-C and linalool (40.37%), geraniol (39.42%) and borneol (5.20%) were dominant components in ΤH-L. The results of the gas chromatography procedure have also been confirmed by 1H and 13C-NMR and TLC analysis. The ecological profile showed an average annual precipitation of 942 ± 18.33 mm and the temperature limits in which T. holosericeus seems to adapt to are 6.80± 1.08 °C 27.70 ± 0.70 °C. Regarding the examined samples, TH-C was adapted to the driest summer and coldest winter conditions, TH-Z was adapted to the lowest annual precipitation with the most complex climatic conditions, and TH-L was adapted to the highest summer temperatures with the lowest precipitation in the wettest period of the year. For each sampled population, the CCA identified the association of the samples' EOs composition with the prevailing local environmental conditions.

13.
Int J Mol Sci ; 25(1)2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38203687

ABSTRACT

Ganoderma is a genus of wood-degrading mushrooms with medicinal importance. Most Ganoderma species have been studied extensively for their secondary metabolites, biological activities, and ecological value. In this study, the biological activities of the extracts of G. adspersum growing wild on Morus alba trees in the region of Western Thrace (Greece) were evaluated, and the petroleum ether, dichloromethanolic, and methanolic extracts were studied further for their secondary metabolites. Six substances were isolated by chromatographic (Clumn Chromatography (C.C.), High Performance Liquid Chromatography (HPLC)) and spectroscopic methods (Nuclear Magnetic Resonance (NMR)), which were classified in the following categories: (a) unsaturated fatty acids: cis-oleic acid (1); (b) sterols: ergosta-7,22-dien-3-one (2), ergosta-7,22-dien-3-ol (3), and ergosta-5,7,22-trien-3-ol (4); and (c) lanostane-type triterpenoids: applanoxidic acid G (5) and applanoxidic acid A (6). Finally, the biological activities of the extracts were estimated for their antioxidant, antimicrobial, and cytotoxic potential. The methanolic extract of G. adspersum showed the highest total antioxidant activity. The results of the antimicrobial activities indicated that all of the extracts had a minimum inhibitory concentration (MIC) ranging between 39.1 and 312.5 µg/mL. The evaluation of the cytotoxic activity of the samples showed once again that the methanolic extract was the most potent among the examined extracts, with half-maximal inhibitory concentration (IC50) values of 19.22 µg/mL (Hep2c cells), 32.9 µg/mL (RD cells), and 8.94 µg/mL (L2OB cells). Moreover, the bioactivity scores of the isolated secondary metabolites were calculated using the online computer software program Molinspiration. The compounds showed promising bioactivity scores for drug targets.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , Ganoderma , Lomustine/analogs & derivatives , Polyporaceae , Antioxidants/pharmacology , Anti-Infective Agents/pharmacology , Methanol
14.
Biomedicines ; 10(12)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36551972

ABSTRACT

Glioblastoma (GBM) is the most aggressive primary central nervous system (CNS) tumor in adults with dismal prognosis. Currently, the therapeutic interventions include gross total resection, when possible, followed by radiotherapy and chemotherapy. However, despite treatment, tumor usually recurs within 7-9 months. The presence of glioma cells with stem-like properties and tumor's heterogeneity have been identified as the most important factors driving recurrence. Recently, research efforts have been focused on the use of natural substances as treatment for GBM. Siderol is an ent-kaurane diterpenoid, isolated from the genus Sideritis. Sideritis extracts have already been investigated for their anti-inflammatory, antioxidant, and anticancer effects. In this study, we investigated the antitumoral effects of siderol in GBM T98 and U87 cell lines, as well as the effects of combined treatment with temozolomide (TMZ). Cell viability was evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and trypan blue exclusion assay. Different concentrations of siderol were used in order to calculate the IC50 values at 72 h after treatment. Flow cytometry used for the DNA cell cycle analysis after treatment with siderol in concentrations of IC50 and twice the IC50 values for 72 h. Furthermore, the effect of siderol in cell's migratory ability was tested using wound healing assay. Cell viability and proliferation, after combined treatment with siderol and TMZ, also were evaluated with the trypan blue exclusion assay and the effects of the combination treatment were analyzed with CompuSyn software. Treatment with siderol significantly reduced cell viability in T98 and U87 cell lines in a dose-dependent manner and IC50 values were calculated, 18 µM and 13 µM, respectively. Moreover, siderol induced G0/G1 cell cycle arrest in a dose-dependent manner and inhibited the migration in both cell lines. In addition, siderol and TMZ seem to have synergistic action in the majority of tested concentrations in both T98 and U87 cells. In conclusion, siderol may represent an innovative strategy for the treatment of GBM, and further studies are needed on siderol's efficacy and mode of action.

15.
Life (Basel) ; 12(11)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36362938

ABSTRACT

Origanum vulgare subsp. hirtum, Thymus vulgaris, and Salvia fructicosa are aromatic plants commonly found in Mediterranean countries and are traditionally used in Greece as a remedy for humans, since they are well known as potent antibacterial, antioxidant, and anti-inflammatory agents. Essential oils (EOs) derived from plants cultivated in the mountainous region of Epirus, Greece, were investigated for their inhibitory activity against key microorganisms with relevance to avian health, while also assessing their antioxidant and anti-inflammatory activity. The total phenolic content (TPC) of the EOs was estimated according to the Folin−Ciocalteu method, while the antioxidant capacity was tested through the EOs' ability to scavenge free radicals by means of the DPPH, ABTS, and FRAP assays. Antibacterial and anti-inflammatory effects were examined by the agar disc diffusion method and the lipoxygenase (LOX) inhibition test, respectively. Furthermore, the EOs' ability to inhibit the invasion of sporozoites of Eimeria tenella (Wisconsin strain) along with any toxic effects were assayed in Madin−Darby bovine kidney (MDBK) cells. The antioxidant activity of the EOs was observed in descending order: oregano > thyme > sage. The antimicrobial effects of thyme and oregano were equivalent and higher than that of sage, while the anti-inflammatory effect of thyme was higher compared to both sage and oregano. The intracellular invasion of sporozoites was evaluated by the detection of E. tenella DNA by qPCR from cell monolayers harvested at 2 and 24 h post-infection. Parasite invasion was inhibited by the addition of oregano essential oil at the concentration of 100 µg/mL by 83% or 93% after 2 or 24 h, respectively, and was higher compared to the addition of thyme and sage, which had similar effects, but at a less intensive level. The cytotoxic assessment of all three essential oils revealed that they had no effect on MDBK cells compared to dimethyl sulfoxide (DMSO), used as the control substance. The supplementation of oregano, thyme, and sage essential oils had a potent antioxidant, anti-inflammatory, antimicrobial, and anticoccidial in vitro effect that is comparable to synthetic substances or approved drugs, justifying the need for further evaluation by in vivo studies in broilers reared in the absence of antimicrobial and anticoccidial drugs or synthetic antioxidant and/or anti-inflammatory compounds.

16.
Antioxidants (Basel) ; 11(9)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36139915

ABSTRACT

In terms of sustainability and circular economy, agricultural by-products may be efficiently reused in insects' rearing for high-quality protein sources in human diet and animal feeds. The present study aimed to explore whether the utilization of carob pods as feeding substrate may beneficially affect Tenebrio molitor's growth, nutritional value, antioxidant status and cellular responses. Increasing levels of milled whole carob pods (0, 25, 50, 75, 100%) were used as alternative wheat bran (control) substrates for yellow mealworm rearing, while growth performance, proximate composition, total phenolic content, antioxidant enzyme activity and the expression of stress- and apoptotic-related proteins were evaluated in larvae. The results showed that carob pods' content up to 75% did not significantly differentiate larvae weight, development time and total dry matter. Larvae total phenolic content and antioxidant activity exhibited a significant increase at 75% content. Although the antioxidant enzymes' activity decreased at both 25 and 50% levels, higher carob content levels (75 and 100%) resulted in no significant changes compared to the control. Carob pods led to decreased apoptotic indicators and the low expression of most stress-related proteins compared to the control. The present findings demonstrate that carob pods and their antioxidant properties exert beneficial effects on T. molitor's rearing and nutritional status, although 100% carob content may impact adversely the larvae due to the high amounts of carob tannins.

17.
Plants (Basel) ; 11(16)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36015387

ABSTRACT

In this study, five plant species, members of the Lamiaceae family, namely Salvia officinalis L., Salvia rosmarinus Spenn, Mentha × piperita L., Mentha spicata L. and Origanum vulgare subsp. hirtum (Link) Ietswaart, were studied for the influence of harvesting time on the herb crop yield, the volatile compounds (EOs) content/yield and their chemical composition. EOs were isolated by means of hydro-distillation from different plant parts at different growth stages. Their components were analyzed by gas chromatography coupled with mass spectrometry (GC-MS). The highest yields of EOs were obtained at the full flowering stage and important changes were observed in their composition. The fluctuations in the percentage composition of the major compounds in the EOs, throughout harvesting time, were observed at camphor/α-thujone for S. officinalis, camphor/1,8-cineole for S. rosmarinus, linalool/linalyl acetate and carvone/limonene for M. × piperita and M. spicata, respectively. The chemotype of O. vulgare subsp. hirtum was identified as carvacrol. The optimization of harvesting time could lead to increased crop production and better EOs quality control, with numerous industrial benefits upon the commercial production of such products.

18.
AAPS PharmSciTech ; 23(6): 214, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35918468

ABSTRACT

The present study investigates the preparation of amorphous solid dispersions (ASD) for the ent-kaurane diterpenoid siderol (SDR). Initially, evaluation of the pure drug (isolated from Sideritis scardica) revealed that the API is a non-stable glass former, and hence the selection of a suitable ASD's matrix/carrier needs special attention. For this reason, four commonly used polymers and copolymers, namely poly(vinylpyrrolidone), copovidone, hydroxypropyl cellulose, and Soluplus® (SOL), were screened via film casting and crystal growth rate measurements. Amongst them, SOL showed the highest SDR's crystal growth rate reduction, and, since it was also miscible with the drug, it was selected for further testing. In this direction, SDR-SOL ASDs were successfully prepared via melt-quench cooling. These formulations showed full API amorphization, while good physical stability (i.e., a stable SDR amorphous dispersions) were obtained after storage for several months. Finally, evaluation of molecular interactions (with the aid of ATR-FTIR spectroscopy) showed strong H-bonds between SOL and SDR, while the use of molecular dynamics (MD) simulations unraveled the nature of these interactions. Therefore, based on the findings of the present work, SOL seems to be an appropriate matrix/carrier for the preparation of SDR ASDs, although further studies are needed in order to explore its full potentials.


Subject(s)
Excipients , Polymers , Drug Compounding/methods , Polymers/chemistry , Solubility , Spectroscopy, Fourier Transform Infrared/methods
19.
Biomedicines ; 10(5)2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35625673

ABSTRACT

High-grade gliomas are among the most aggressive malignancies, with significantly low median survival. Recent experimental research in the field has highlighted the importance of natural substances as possible antiglioma agents, also known for their antioxidant and anti-inflammatory action. We have previously shown that natural substances target several surface cluster of differentiation (CD) markers in glioma cells, as part of their mechanism of action. We analyzed the genome-wide NF-κB binding sites residing in consensus regulatory elements, based on ENCODE data. We found that NF-κB binding sites reside adjacent to the promoter regions of genes encoding CD markers targeted by antiglioma agents (namely, CD15/FUT4, CD28, CD44, CD58, CD61/SELL, CD71/TFRC, and CD122/IL2RB). Network and pathway analysis revealed that the markers are associated with a core network of genes that, altogether, participate in processes that associate tumorigenesis with inflammation and immune evasion. Our results reveal a core regulatory network that can be targeted in glioblastoma, with apparent implications in individuals that suffer from this devastating malignancy.

20.
Nat Prod Res ; 36(23): 6031-6038, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35184636

ABSTRACT

Chemical investigation of ethyl acetate extract from the aerial parts of Helleborus cyclophyllus (A.Braun) Boiss. led to the isolation of ten natural products, and their structures were identified to be: 2-deoxy-D-ribono-1,4-lactone (1), 2-O-feruloyl-L-malate (2), three flavonoids: quercetin 3-O-ß-D-galactopyranoside (3), quercetin 3-O-6''-(3-hydroxy-3-methyl-gloutaryl)-ß-D-glucopyranoside (4) and quercetin 3-O-(2‴-caffeoylsophoroside) (5), 6-O-caffeoyl-1-O-p-coumaroyl-ß-D-glucopyranoside (6), two ecdysteroids: 20-hydroxyecdysone (7) and polypodine B (8) and two bufadienolides: deglucohellebrin (9) and hellebrin (10), on the basis of MS and NMR spectra. This is the first report on the occurrence of compounds (2)-(6) in the genus Helleborus. The chemotaxonomic significance of these compounds was summarised. Bioactivity score, molecular and pharmacokinetic properties of the isolated compounds were calculated by online computer software program Molinspiration. Compounds showed promising bioactivity scores for drug targets. Moreover, some of the isolated phenolic compounds were tested for their antioxidant and antiinflammatory activities. Tested compounds presented antioxidant ability correlated to the presence of the phenolic hydroxyl groups.


Subject(s)
Helleborus , Ranunculaceae , Helleborus/chemistry , Antioxidants/chemistry , Quercetin/analysis , Flavonoids/chemistry , Phenols/analysis , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/analysis , Plant Components, Aerial/chemistry , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...