Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 13(15)2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34359808

ABSTRACT

BACKGROUND: The human leukocyte antigen (HLA) class II molecules are constitutively expressed in some melanoma, but the underlying molecular mechanisms have not yet been characterized. METHODS: The expression of HLA class II antigen processing machinery (APM) components was determined in melanoma samples by qPCR, Western blot, flow cytometry and immunohistochemistry. Immunohistochemical and TCGA datasets were used for correlation of HLA class II expression to tumor grading, T-cell infiltration and patients' survival. RESULTS: The heterogeneous HLA class II expression in melanoma samples allowed us to characterize four distinct phenotypes. Phenotype I totally lacks constitutive HLA class II surface expression, which is inducible by interferon-gamma (IFN-γ); phenotype II expresses low basal surface HLA class II that is further upregulated by IFN-γ; phenotype III lacks constitutive and IFN-γ controlled HLA class II expression, but could be induced by epigenetic drugs; and in phenotype IV, lack of HLA class II expression is not recovered by any drug tested. High levels of HLA class II APM component expression were associated with an increased intra-tumoral CD4+ T-cell density and increased patients' survival. CONCLUSIONS: The heterogeneous basal expression of HLA class II antigens and/or APM components in melanoma cells is caused by distinct molecular mechanisms and has clinical relevance.

3.
Oncoimmunology ; 9(1): 1774323, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32923135

ABSTRACT

Tumor escape is often associated with abnormalities in the surface expression of the human leukocyte antigen class I (HLA-I) antigens thereby limiting CD8+ cytotoxic T cell responses. This impaired HLA-I surface expression can be mediated by deficient expression of components of the antigen processing and presentation machinery (APM) due to epigenetic, transcriptional and/or post-transcriptional processes. Since a discordant mRNA and protein expression pattern of APM components including the peptide transporter associated with antigen processing 1 (TAP1) has been frequently described in tumors of distinct origin, a post-transcriptional control of APM components caused by microRNAs (miR) was suggested. Using an in silico approach, miR-200a-5p has been identified as a candidate miR binding to the 3' untranslated region (UTR) of TAP1. Luciferase reporter assays demonstrated a specific binding of miR-200a-5p to the TAP1 3'-UTR. Furthermore, the miR-200a-5p expression is inversely correlated with the TAP1 protein expression in HEK293T cells and in a panel of melanoma cell lines as well as in primary melanoma lesions. High levels of miR-200a-5p expression were associated with a shorter overall survival of melanoma patients. Overexpression of miR-200a-5p reduced TAP1 levels, which was accompanied by a decreased HLA-I surface expression and an enhanced NK cell sensitivity of melanoma cells. These data show for the first time a miR-mediated control of the peptide transporter subunit TAP1 in melanoma thereby leading to a reduced HLA-I surface expression accompanied by an altered immune recognition and reduced patients' survival. Abbreviations: Ab: antibody; ACTB: ß-actin; APM: antigen processing and presentation machinery; ATCC: American tissue culture collection; ß2-m: ß2-microglobulin; BSA: bovine serum albumin; CTL: cytotoxic T lymphocyte; FCS: fetal calf serum; FFL: firefly luciferase; FFPE: formalin-fixed paraffin-embedded; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HC: heavy chain; HLA: human leukocyte antigen; HLA-I: HLA class I; HRP: horseradish peroxidase; IFN: interferon; im-miR: immune modulatory miRNA; LMP: low molecular weight protein; luc: luciferase; MFI: mean fluorescence intensity; MHC: major histocompatibility complex; miR: microRNA; NC: negative control; NK: natural killer; NSCLC: non-small cell lung carcinoma; OS: overall survival; PBMC: peripheral blood mononuclear cells; RBP: RNA-binding proteins; RL: Renilla; RLU: relative light units; TAP: transporter associated with antigen processing; tpn: tapasin; UTR: untranslated region.


Subject(s)
Melanoma , MicroRNAs , ATP Binding Cassette Transporter, Subfamily B, Member 2/genetics , Antigen Presentation , HEK293 Cells , Humans , Leukocytes, Mononuclear , Melanoma/genetics , MicroRNAs/genetics , Peptide Transporter 1
4.
J Clin Med ; 9(9)2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32825219

ABSTRACT

The underlying molecular mechanisms of the aberrant expression of components of the HLA class I antigen processing and presentation machinery (APM) in tumors leading to evasion from T cell-mediated immune surveillance could be due to posttranscriptional regulation mediated by microRNAs (miRs). So far, some miRs controlling the expression of different APM components have been identified. Using in silico analysis and an miR enrichment protocol in combination with small RNA sequencing, miR-26b-5p and miR-21-3p were postulated to target the 3' untranslated region (UTR) of the peptide transporter TAP1, which was confirmed by high free binding energy and dual luciferase reporter assays. Overexpression of miR-26b-5p and miR-21-3p in melanoma cells downregulated the TAP1 protein and reduced expression of HLA class I cell surface antigens, which could be reverted by miR inhibitors. Moreover, miR-26b-5p overexpression induced a decreased T cell recognition. Furthermore, an inverse expression of miR-26b-5p and miR-21-3p with TAP1 was found in primary melanoma lesions, which was linked with the frequency of CD8+ T cell infiltration. Thus, miR-26-5p and miR-21-3p are involved in the HLA class I-mediated immune escape and might be used as biomarkers or therapeutic targets for HLA class Ilow melanoma cells.

5.
Methods Enzymol ; 636: 323-337, 2020.
Article in English | MEDLINE | ID: mdl-32178824

ABSTRACT

The major mechanisms of posttranscriptional gene regulation involve microRNAs (miRs) and RNA-binding proteins (RBPs). Recent studies not only identified functionally and characterized such factors, but rather investigated their use as biomarkers and suitability as biopharmaceuticals. Indeed, some miR-based drugs are currently tested in clinical studies as potential anti-viral and as anti-cancer agents. For the chemical application, a profound knowledge of the binding affinities of miRs and RBPs to their target RNA is essential. The authors recently identified several miRs regulating the non-classical human leukocyte antigen (HLA)-G, and characterized their binding affinity to the 3' untranslated region (UTR) of HLA-G. These miRs identified by miTRAP were classified into high affinity and low affinity miRs, which were either key regulators or fine tuners of HLA-G. While the miTRAP method has been described in detail, a novel modified miTRAP technique has been established, which completely consists of commercially available components and uses a simplified cloning strategy. This technique allows the identification and characterization of miRs and RBPs for any RNA sequence of interest.


Subject(s)
MicroRNAs , 3' Untranslated Regions , Base Sequence , Chromatography, Affinity , Humans , MicroRNAs/genetics
6.
Methods Enzymol ; 636: 339-350, 2020.
Article in English | MEDLINE | ID: mdl-32178825

ABSTRACT

By binding RNA in a sequence- and/or structure-dependent manner, RNA-binding proteins (RBPs) and their target RNA form a ribonucleoprotein complex involved in the RNA's fate. In this context, RBPs were shown to act as key players for post-transcriptional gene regulation by controlling RNA editing, splicing, polyadenylation, translocation, and stability. So far, over 1900 RBPs were identified and their deregulation has been associated with the development and progression of various disorders including cancer. Although a number of sophisticated approaches are available, our knowledge about direct RNA-RBP interactions is, however, quite limited. Here we present a protocol with restricted requirements for equipment and devices to identify RBPs. This approach is based on (i) the purification of biotinylated RNA, (ii) chromatographic separation of co-purified proteins, and (iii) their identification by mass spectrometry.


Subject(s)
Neoplasms , RNA-Binding Proteins , Gene Expression Regulation , Humans , Neoplasms/genetics , RNA/genetics , RNA/metabolism , RNA Splicing , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
7.
Cancer Immunol Immunother ; 68(10): 1689-1700, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31375885

ABSTRACT

Immunotherapy aims to activate the immune system to fight cancer in a very specific and targeted manner. Despite the success of different immunotherapeutic strategies, in particular antibodies directed against checkpoints as well as adoptive T-cell therapy, the response of patients is limited in different types of cancers. This attributes to escape of the tumor from immune surveillance and development of acquired resistances during therapy. In this review, the different evasion and resistance mechanisms that limit the efficacy of immunotherapies targeting tumor-associated antigens presented by major histocompatibility complex molecules on the surface of the malignant cells are summarized. Overcoming these escape mechanisms is a great challenge, but might lead to a better clinical outcome of patients and is therefore currently a major focus of research.


Subject(s)
Immunotherapy/methods , Neoplasms/therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Tumor Escape , Antigen Presentation , HLA-G Antigens/physiology , Histocompatibility Antigens Class I/immunology , Humans
8.
Methods Mol Biol ; 1913: 81-101, 2019.
Article in English | MEDLINE | ID: mdl-30666600

ABSTRACT

Immune escape by cancer cells can be triggered by aberrant expression of immunological key players, which can be achieved by distinct molecular mechanisms including immune modulatory miRNAs. One suitable method to identify miRNAs that specifically target immune relevant molecules is the miRNA enrichment via RNA affinity purification method named miTRAP (miRNA trapping by RNA in vitro affinity purification). Here, we present a detailed protocol for construct preparation, RNA immobilization via MS2BP-MBP to beads, miRNA enrichment, and elution followed by analysis of the obtained miRNA candidates via qRT-PCR.


Subject(s)
Chromatography, Affinity/methods , MicroRNAs/isolation & purification , Neoplasms/immunology , Tumor Escape/genetics , Chromatography, Affinity/instrumentation , Humans , MicroRNAs/chemistry , MicroRNAs/immunology , Neoplasms/genetics , Real-Time Polymerase Chain Reaction/instrumentation , Real-Time Polymerase Chain Reaction/methods , Recombinant Fusion Proteins/chemistry , Reverse Transcriptase Polymerase Chain Reaction/instrumentation , Reverse Transcriptase Polymerase Chain Reaction/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...