Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Math Phys Eng Sci ; 474(2216): 20170319, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30220862

ABSTRACT

The inspection of complex-shaped components, such as those enabled by additive manufacturing, is a major challenge in industrial quality assurance. A frequently adopted approach to volumetric non-destructive evaluation is X-ray computed tomography, but this has major drawbacks. Two-dimensional radiography can overcome some of these problems, but does not generally provide an inspection that is as capable. Moreover, designing a detailed inspection for a complex-shaped component is a labour-intensive task, requiring significant expert input. In response, a computational framework for optimizing the data acquisition for an image-based inspection modality has been devised. The initial objective is to advance the capabilities of radiography, but the algorithm is, in principle, also applicable to alternative types of imaging. The algorithm exploits available prior information about the inspection and simulations of the inspection modality to allow the determination of the optimal inspection configuration, including specifically component poses with respect to the imaging system. As an intermediate output, spatial maps of inspection performance are computed, for understanding spatially varying limits of detection. Key areas of innovation concern the defect detectability evaluation for arbitrarily complex indications and the creation of an application-specific optimization algorithm. Initial trials of the algorithm are presented, with good results.

SELECTION OF CITATIONS
SEARCH DETAIL