Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 128(11): 116401, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35363018

ABSTRACT

The spatial distributions of antibonding π^{*} and σ^{*} states in epitaxial graphene multilayers are mapped using electron energy-loss spectroscopy in a scanning transmission electron microscope. Inelastic channeling simulations validate the interpretation of the spatially resolved signals in terms of electronic orbitals, and demonstrate the crucial effect of the material thickness on the experimental capability to resolve the distribution of unoccupied states. This work illustrates the current potential of core-level electron energy-loss spectroscopy towards the direct visualization of electronic orbitals in a wide range of materials, of huge interest to better understand chemical bonding among many other properties at interfaces and defects in solids.

2.
J Phys Condens Matter ; 32(12): 125401, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-31739289

ABSTRACT

Previous first-principles calculations have failed to reproduce many of the key thermoelectric features of Fe2VAl, e.g. the maximum values of the Seebeck coefficient S and its asymmetry with respect to the chemical potential. Also, previous theoretical predictions suggested that the pseudo band gap of Fe2VAl switches from indirect to direct upon doping. In this work, we report first-principles calculations that correctly reproduce the experimentally measured thermoelectric properties of Fe2VAl. This is achieved by adding a larger Hubbard U term to V atoms than to Fe atoms and including a scissors operator afterwards. As a result, bulk Fe2VAl is modelled as a gapless semiconductor with maximum S values of 76 and -158 [Formula: see text]V K-1 for p - and n-type, respectively, which agree well with the experimental measurements.

3.
Microsc Microanal ; 25(6): 1297-1303, 2019 12.
Article in English | MEDLINE | ID: mdl-31407642

ABSTRACT

From simple averaging to more sophisticated registration and restoration strategies, such as super-resolution (SR), there exist different computational techniques that use a series of images of the same object to generate enhanced images where noise and other distortions have been reduced. In this work, we provide qualitative and quantitative measurements of this enhancement for high-angle annular dark-field scanning transmission electron microscopy imaging. These images are compared in two ways, qualitatively through visual inspection in real and reciprocal space, and quantitatively, through the calculation of objective measurements, such as signal-to-noise ratio and atom column roundness. Results show that these techniques improve the quality of the images. In this paper, we use an SR methodology that allows us to take advantage of the information present in the image frames and to reliably facilitate the analysis of more difficult regions of interest in experimental images, such as surfaces and interfaces. By acquiring a series of cross-sectional experimental images of magnetite (Fe3O4) thin films (111), we have generated interpolated images using averaging and SR, and reconstructed the atomic structure of the very top surface layer that consists of a full monolayer of Fe, with topmost Fe atoms in tetrahedrally coordinated sites.

4.
Nat Mater ; 17(1): 28-35, 2018 01.
Article in English | MEDLINE | ID: mdl-29180774

ABSTRACT

Most of the magnetic devices in advanced electronics rely on the exchange bias effect, a magnetic interaction that couples a ferromagnetic and an antiferromagnetic material, resulting in a unidirectional displacement of the ferromagnetic hysteresis loop by an amount called the 'exchange bias field'. Setting and optimizing exchange bias involves cooling through the Néel temperature of the antiferromagnetic material in the presence of a magnetic field. Here we demonstrate an alternative process for the generation of exchange bias. In IrMn/FeCo bilayers, a structural phase transition in the IrMn layer develops at room temperature, exchange biasing the FeCo layer as it propagates. Once the process is completed, the IrMn layer contains very large single-crystal grains, with a large density of structural defects within each grain, which are promoted by the FeCo layer. The magnetic characterization indicates that these structural defects in the antiferromagnetic layer are behind the resulting large value of the exchange bias field and its good thermal stability. This mechanism for establishing the exchange bias in such a system can contribute towards the clarification of fundamental aspects of this exchange interaction.

5.
Sci Rep ; 6: 35582, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27752117

ABSTRACT

We present a study of the interaction mechanisms in magnetic trilayer structures with an MgO barrier grown by molecular beam epitaxy. The interlayer exchange coupling, Aex, is determined using SQUID magnetometry and ferromagnetic resonance (FMR), displaying an unexpected oscillatory behaviour as the thickness, tMgO, is increased from 1 to 4 nm. Transmission electron microscopy confirms the continuity and quality of the tunnelling barrier, eliminating the prospect of exchange arising from direct contact between the two ferromagnetic layers. The Gilbert damping is found to be almost independent of the MgO thickness, suggesting the suppression of spin pumping. The element-specific technique of x-ray detected FMR reveals a small dynamic exchange interaction, acting in concert with the static interaction to induce coupled precession across the multilayer stack. These results highlight the potential of spin pumping and spin transfer torque for device applications in magnetic tunnel junctions relying on commonly used MgO barriers.

6.
Sci Rep ; 6: 26549, 2016 05 25.
Article in English | MEDLINE | ID: mdl-27221782

ABSTRACT

We present a study of the structure and chemical composition of the Cr-doped 3D topological insulator Bi2Se3. Single-crystalline thin films were grown by molecular beam epitaxy on Al2O3 (0001), and their structural and chemical properties determined on an atomic level by aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy. A regular quintuple layer stacking of the Bi2Se3 film is found, with the exception of the first several atomic layers in the initial growth. The spectroscopy data gives direct evidence that Cr is preferentially substituting for Bi in the Bi2Se3 host. We also show that Cr has a tendency to segregate at internal grain boundaries of the Bi2Se3 film.

7.
J Phys Condens Matter ; 25(48): 485004, 2013 Dec 04.
Article in English | MEDLINE | ID: mdl-24177186

ABSTRACT

Magnetite films grown on crystallographically matched substrates such as MgAl2O4 are not expected to show anomalous properties such as negative magnetoresistance and high saturation fields. By atomic resolution imaging using scanning transmission electron microscopy we show direct evidence of anti-phase domain boundaries (APB) present in these heterostructures. Experimentally identified 1/4<101> shifts determine the atomic structure of the observed APBs. The dominant non-bulk superexchange interactions are between 180° octahedral-Fe/O/octahedral-Fe sites which provide strong antiferromagnetic coupling across the defect interface resulting in non-bulk magnetic and magnetotransport properties.

8.
Phys Rev Lett ; 110(18): 186804, 2013 May 03.
Article in English | MEDLINE | ID: mdl-23683233

ABSTRACT

Using scanning tunneling microscopy and transmission electron microscopy, we demonstrate the existence of antiphase boundaries between neighboring grains shifted by a fraction of a quintuple layer in epitaxial (0001) films of the three-dimensional topological insulator Bi(2)Se(3). Scanning tunneling spectroscopy and first-principles calculations reveal that these antiphase boundaries provide electrostatic fields on the order of 10(8) V/m that locally charge the Dirac states, modulating the carrier density, and shift the Dirac point by up to 120 meV. This intrinsic electric field effect, demonstrated here near interfaces between Bi(2)Se(3) grains, provides direct experimental evidence at the atomic scale that the Dirac states are indeed robust against extended structural defects and tunable by electric field. These results also shed light on the recent observation of coexistence of Dirac states and two-dimensional electron gas on Bi(2)Se(3) (0001) after adsorption of metal atoms and gas molecules.

9.
J Phys Condens Matter ; 23(33): 334211, 2011 Aug 24.
Article in English | MEDLINE | ID: mdl-21813945

ABSTRACT

Epitaxial films of In(2)O(3) have been grown on Y-stabilised ZrO(2)(111) substrates by molecular beam epitaxy over a range of thicknesses between 35 and 420 nm. The thinnest films are strained, but display a 'cross-hatch' morphology associated with a network of misfit dislocations which allow partial accommodation of the lattice mismatch. With increasing thickness a 'dewetting' process occurs and the films break up into micron sized mesas, which coalesce into continuous films at the highest coverages. The changes in morphology are accompanied by a progressive release of strain and an increase in carrier mobility to a maximum value of 73 cm(2) V(-1) s(-1). The optical band gap in strained ultrathin films is found to be smaller than for thicker films. Modelling of the system, using a combination of classical pair-wise potentials and ab initio density functional theory, provides a microscopic description of the elastic contributions to the strained epitaxial growth, as well as the electronic effects that give rise to the observed band gap changes. The band gap increase induced by the uniaxial compression is offset by the band gap reduction associated with the epitaxial tensile strain.


Subject(s)
Indium/chemistry , Zirconium/chemistry , Computers, Molecular , Crystallization , Materials Testing , Microscopy, Electron, Transmission , Surface Properties
10.
Phys Rev Lett ; 94(21): 216101, 2005 Jun 03.
Article in English | MEDLINE | ID: mdl-16090332

ABSTRACT

Selected molecular beam epitaxy of zinc blende (111) or wurtzite (0001) GaN films on polar MgO(111) is achieved depending on whether N or Ga is deposited first. The cubic stacking is enabled by nitrogen-induced polar surface stabilization, which yields a metallic MgO(111)-(1 x 1)-ON surface. High-resolution transmission electron microscopy and density functional theory studies indicate that the atomically abrupt semiconducting GaN(111)/MgO(111) interface has a Mg-O-N-Ga stacking, where the N atom is bonded to O at a top site. This specific atomic arrangement at the interface allows the cubic stacking to more effectively screen the substrate and film electric dipole moment than the hexagonal stacking, thus stabilizing the zinc blende phase even though the wurtzite phase is the ground state in the bulk.

SELECTION OF CITATIONS
SEARCH DETAIL
...