Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3258, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637498

ABSTRACT

Viral infections remain a major risk in immunocompromised pediatric patients, and virus-specific T cell (VST) therapy has been successful for treatment of refractory viral infections in prior studies. We performed a phase II multicenter study (NCT03475212) for the treatment of pediatric patients with inborn errors of immunity and/or post allogeneic hematopoietic stem cell transplant with refractory viral infections using partially-HLA matched VSTs targeting cytomegalovirus, Epstein-Barr virus, or adenovirus. Primary endpoints were feasibility, safety, and clinical responses (>1 log reduction in viremia at 28 days). Secondary endpoints were reconstitution of antiviral immunity and persistence of the infused VSTs. Suitable VST products were identified for 75 of 77 clinical queries. Clinical responses were achieved in 29 of 47 (62%) of patients post-HSCT including 73% of patients evaluable at 1-month post-infusion, meeting the primary efficacy endpoint (>52%). Secondary graft rejection occurred in one child following VST infusion as described in a companion article. Corticosteroids, graft-versus-host disease, transplant-associated thrombotic microangiopathy, and eculizumab treatment correlated with poor response, while uptrending absolute lymphocyte and CD8 T cell counts correlated with good response. This study highlights key clinical factors that impact response to VSTs and demonstrates the feasibility and efficacy of this therapy in pediatric HSCT.


Subject(s)
Epstein-Barr Virus Infections , Hematopoietic Stem Cell Transplantation , Virus Diseases , Humans , Child , Herpesvirus 4, Human , Risk Factors , Hematopoietic Stem Cell Transplantation/adverse effects
2.
Nat Commun ; 15(1): 2749, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553461

ABSTRACT

Virus-specific T cells (VST) from partially-HLA matched donors have been effective for treatment of refractory viral infections in immunocompromised patients in prior studies with a good safety profile, but rare adverse events have been described. Here we describe a unique and severe adverse event of VST therapy in an infant with severe combined immunodeficiency, who receives, as part of a clinical trial (NCT03475212), third party VSTs for treating cytomegalovirus viremia following bone marrow transplantation. At one-month post-VST infusion, rejection of graft and reversal of chimerism is observed, as is an expansion of T cells exclusively from the VST donor. Single-cell gene expression and T cell receptor profiling demonstrate a narrow repertoire of predominantly activated CD4+ T cells in the recipient at the time of rejection, with the repertoire overlapping more with that of peripheral blood from VST donor than the infused VST product. This case thus demonstrates a rare but serious side effect of VST therapy.


Subject(s)
Hematopoietic Stem Cell Transplantation , Virus Diseases , Infant , Humans , Bone Marrow Transplantation/adverse effects , Bone Marrow , Immunotherapy, Adoptive , T-Lymphocytes/transplantation , Hematopoietic Stem Cell Transplantation/adverse effects
3.
Cytotherapy ; 26(2): 103-112, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37943204

ABSTRACT

Quality control testing and analytics are critical for the development and manufacture of cell and gene therapies, and flow cytometry is a key quality control and analytical assay that is used extensively. However, the technical scope of characterization assays and safety assays must keep apace as the breadth of cell therapy products continues to expand beyond hematopoietic stem cell products into producing novel adoptive immune therapies and gene therapy products.  Flow cytometry services are uniquely positioned to support the evolving needs of cell therapy facilities, as access to flow cytometers, new antibody clones and improved fluorochrome reagents becomes more egalitarian. This report will outline the features, logistics, limitations and the current state of flow cytometry within the context of cellular therapy.


Subject(s)
Antibodies , Fluorescent Dyes , Flow Cytometry , Quality Control , Genetic Therapy
4.
Proc Natl Acad Sci U S A ; 120(50): e2304074120, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38051767

ABSTRACT

Severity of neurobehavioral deficits in children born from adverse pregnancies, such as maternal alcohol consumption and diabetes, does not always correlate with the adversity's duration and intensity. Therefore, biological signatures for accurate prediction of the severity of neurobehavioral deficits, and robust tools for reliable identification of such biomarkers, have an urgent clinical need. Here, we demonstrate that significant changes in the alternative splicing (AS) pattern of offspring lymphocyte RNA can function as accurate peripheral biomarkers for motor learning deficits in mouse models of prenatal alcohol exposure (PAE) and offspring of mother with diabetes (OMD). An aptly trained deep-learning model identified 29 AS events common to PAE and OMD as superior predictors of motor learning deficits than AS events specific to PAE or OMD. Shapley-value analysis, a game-theory algorithm, deciphered the trained deep-learning model's learnt associations between its input, AS events, and output, motor learning performance. Shapley values of the deep-learning model's input identified the relative contribution of the 29 common AS events to the motor learning deficit. Gene ontology and predictive structure-function analyses, using Alphafold2 algorithm, supported existing evidence on the critical roles of these molecules in early brain development and function. The direction of most AS events was opposite in PAE and OMD, potentially from differential expression of RNA binding proteins in PAE and OMD. Altogether, this study posits that AS of lymphocyte RNA is a rich resource, and deep-learning is an effective tool, for discovery of peripheral biomarkers of neurobehavioral deficits in children of diverse adverse pregnancies.


Subject(s)
Diabetes Mellitus , Fetal Alcohol Spectrum Disorders , Prenatal Exposure Delayed Effects , Mice , Animals , Child , Humans , Pregnancy , Female , Alternative Splicing , Prenatal Exposure Delayed Effects/chemically induced , Ethanol , Diabetes Mellitus/chemically induced , Biomarkers/metabolism , RNA/metabolism , Fetal Alcohol Spectrum Disorders/genetics
5.
Cell Rep Med ; 4(11): 101236, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37827154

ABSTRACT

Despite potential impact on the graft vs. leukemia (GVL) effect, immunotherapy targeting CTLA-4 and/or PD-1 has not been successfully combined with bone marrow transplant (BMT) because it exacerbates graft vs. host disease (GVHD). Here, using models of GVHD and leukemia, we demonstrate that targeting hypoxia-inducible factor 1α (HIF1α) via pharmacological or genetic approaches reduces GVHD by inducing PDL1 expression on host tissue while selectively inhibiting PDL1 in leukemia cells to enhance the GVL effect. More importantly, combination of HIF1α inhibition with anti-CTLA-4 antibodies allows simultaneous inhibition of both PDL1 and CTLA-4 checkpoints to achieve better outcomes in models of mouse and human BMT-leukemia settings. These findings provide an approach to enhance the curative effect of BMT for leukemia and broaden the impact of cancer immunotherapy.


Subject(s)
Graft vs Host Disease , Leukemia , Humans , CTLA-4 Antigen , Graft vs Host Disease/prevention & control , Hypoxia-Inducible Factor 1, alpha Subunit , Immunotherapy , Leukemia/genetics , Leukemia/therapy , Animals , Mice
6.
Mol Ther Methods Clin Dev ; 27: 415-430, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36381305

ABSTRACT

Cord blood (CB)-derived natural killer (NK) cells that are genetically engineered to express a chimeric antigen receptor (CAR) are an attractive off-the-shelf therapy for the treatment of cancer, demonstrating a robust safety profile in vivo. For poor prognosis brain tumors such as glioblastoma multiforme (GBM), novel therapies are urgently needed. Although CAR-T cells demonstrate efficacy in preclinical GBM models, an off-the-shelf product may exhibit unwanted side effects like graft-versus-host disease. Hence, we developed an off-the-shelf CAR-NK cell approach using a B7H3 CAR and showed that CAR-transduced NK cells have robust cytolytic activity against GBM cells in vitro. However, transforming growth factor (TGF)-ß within the tumor microenvironment has devastating effects on the cytolytic activity of both unmodified and CAR-transduced NK cells. To overcome this potent immune suppression, we demonstrated that co-transducing NK cells with a B7H3 CAR and a TGF-ß dominant negative receptor (DNR) preserves cytolytic function in the presence of exogenous TGF-ß. This study demonstrates that a novel DNR and CAR co-expression strategy may be a promising therapeutic for recalcitrant CNS tumors like GBM.

8.
Clin Cancer Res ; 28(19): 4278-4291, 2022 10 03.
Article in English | MEDLINE | ID: mdl-35736214

ABSTRACT

PURPOSE: Patients with MYC-amplified medulloblastoma (MB) have poor prognosis and frequently develop recurrence, thus new therapeutic approaches to prevent recurrence are needed. EXPERIMENTAL DESIGN: We evaluated OLIG2 expression in a panel of mouse Myc-driven MB tumors, patient MB samples, and patient-derived xenograft (PDX) tumors and analyzed radiation sensitivity in OLIG2-high and OLIG2-low tumors in PDX lines. We assessed the effect of inhibition of OLIG2 by OLIG2-CRISPR or the small molecule inhibitor CT-179 combined with radiotherapy on tumor progression in PDX models. RESULTS: We found that MYC-associated MB can be stratified into OLIG2-high and OLIG2-low tumors based on OLIG2 protein expression. In MYC-amplified MB PDX models, OLIG2-low tumors were sensitive to radiation and rarely relapsed, whereas OLIG2-high tumors were resistant to radiation and consistently developed recurrence. In OLIG2-high tumors, irradiation eliminated the bulk of tumor cells; however, a small number of tumor cells comprising OLIG2- tumor cells and rare OLIG2+ tumor cells remained in the cerebellar tumor bed when examined immediately post-irradiation. All animals harboring residual-resistant tumor cells developed relapse. The relapsed tumors mirrored the cellular composition of the primary tumors with enriched OLIG2 expression. Further studies demonstrated that OLIG2 was essential for recurrence, as OLIG2 disruption with CRISPR-mediated deletion or with the small molecule inhibitor CT-179 prevented recurrence from the residual radioresistant tumor cells. CONCLUSIONS: Our studies reveal that OLIG2 is a biomarker and an effective therapeutic target in a high-risk subset of MYC-amplified MB, and OLIG2 inhibitor combined with radiotherapy represents a novel effective approach for treating this devastating disease.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Animals , Biomarkers , Cell Line, Tumor , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/genetics , Disease Models, Animal , Humans , Medulloblastoma/drug therapy , Medulloblastoma/genetics , Medulloblastoma/radiotherapy , Mice , Neoplasm Recurrence, Local/genetics , Oligodendrocyte Transcription Factor 2/genetics , Oligodendrocyte Transcription Factor 2/therapeutic use , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism
9.
Mol Ther Methods Clin Dev ; 25: 439-447, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35506060

ABSTRACT

Adoptive T cell immunotherapy has been used to restore immunity against multiple viral targets in immunocompromised patients after bone-marrow transplantation and has been proposed as a strategy for preventing coronavirus 2019 (COVID-19) in this population. Ideally, expanded severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-virus-specific T cells (CSTs) should demonstrate marked cell expansion, T cell specificity, and CD8+ T cell skewing prior to adoptive transfer. However, current methodologies using IL-4 + IL-7 result in suboptimal specificity, especially in CD8+ cells. Using a microexpansion platform, we screened various cytokine cocktails (IL-4 + IL-7, IL-15, IL-15 + IL-4, IL-15 + IL-6, and IL-15 + IL-7) for the most favorable culture conditions. IL-15 + IL-7 optimally balanced T cell expansion, polyfunctionality, and CD8+ T cell skewing of a final therapeutic T cell product. Additionally, the transcriptomes of CD4+ and CD8+ T cells cultured with IL-15 + IL-7 displayed the strongest induction of antiviral type I interferon (IFN) response genes. Subsequently, microexpansion results were successfully translated to a Good Manufacturing Practice (GMP)-applicable format where IL-15 + IL-7 outperformed IL-4 + IL-7 in specificity and expansion, especially in the desirable CD8+ T cell compartment. These results demonstrate the functional implications of IL-15-, IL-4-, and IL-7-containing cocktails for therapeutic T cell expansion, which could have broad implication for cellular therapy, and pioneer the use of RNA sequencing (RNA-seq) to guide viral-specific T cell (VST) product manufacturing.

10.
Cytotherapy ; 24(1): 10-15, 2022 01.
Article in English | MEDLINE | ID: mdl-34483067

ABSTRACT

Although most studies describing coronavirus disease 2019 vaccine responses have focused on antibodies, there is increasing evidence that T cells play a critical role. Here the authors evaluated T-cell responses in seronegative donors before and after vaccination to define responses to the severe acute respiratory syndrome coronavirus 2 reference strain as well as to mutations in the variant strains Alpha/B.1.1.7 and Beta/B.1.351. The authors observed enhanced T-cell responses to reference and variant spike strains post-vaccination.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Humans , Spike Glycoprotein, Coronavirus/genetics , T-Lymphocytes , Vaccination
11.
Blood Adv ; 6(2): 473-485, 2022 01 25.
Article in English | MEDLINE | ID: mdl-34495306

ABSTRACT

Hodgkin lymphoma (HL) Reed Sternberg cells express tumor-associated antigens (TAA) that are potential targets for cellular therapies. We recently demonstrated that TAA-specific T cells (TAA-Ts) targeting WT1, PRAME, and Survivin were safe and associated with prolonged time to progression in solid tumors. Hence, we evaluated whether TAA-Ts when given alone or with nivolumab were safe and could elicit antitumor effects in vivo in patients with relapsed/refractory (r/r) HL. Ten patients were infused with TAA-Ts (8 autologous and 2 allogeneic) for active HL (n = 8) or as adjuvant therapy after hematopoietic stem cell transplant (n = 2). Six patients received nivolumab priming before TAA-Ts and continued until disease progression or unacceptable toxicity. All 10 products recognized 1 or more TAAs and were polyfunctional. Patients were monitored for safety for 6 weeks after the TAA-Ts and for response until disease progression. The infusions were safe with no clear dose-limiting toxicities. Patients receiving TAA-Ts as adjuvant therapy remain in continued remission at 3+ years. Of the 8 patients with active disease, 1 patient had a complete response and 7 had stable disease at 3 months, 3 of whom remain with stable disease at 1 year. Antigen spreading and long-term persistence of TAA-Ts in vivo were observed in responding patients. Nivolumab priming impacted TAA-T recognition and persistence. In conclusion, treatment of patients with r/r HL with TAA-Ts alone or in combination with nivolumab was safe and produced promising results. This trial was registered at www.clinicaltrials.gov as #NCT022039303 and #NCT03843294.


Subject(s)
Hodgkin Disease , Nivolumab , Antigens, Neoplasm , Disease Progression , Hodgkin Disease/drug therapy , Humans , Nivolumab/therapeutic use , T-Lymphocytes/pathology
12.
Clin Exp Allergy ; 52(2): 250-264, 2022 02.
Article in English | MEDLINE | ID: mdl-34757674

ABSTRACT

BACKGROUND: Excessive production of IgE plays a major role in the pathology of food allergy. In an attempt to identify anti-IgE natural products, Arctium Lappa was one of the most effective herbs among approximately 300 screened medicinal herbs. However, little is known about its anti-IgE compounds. OBJECTIVE: To identify compounds from Arctium Lappa for targeted therapy on IgE production and explore their underlying mechanisms. METHODS: Liquid-liquid extraction and column chromatographic methods were used to purify the compounds. IgE inhibitory effects were determined on IgE-producing human myeloma U266 cells, peanut-allergic murine model and PBMCs from food-allergic patients. Genes involved in IgE inhibition in PBMCs were studied by RNA sequencing. RESULTS: The main compounds isolated were identified as arctiin and arctigenin. Both compounds significantly inhibited IgE production in U266 cells, with arctigenin the most potent (IC50=5.09µg/mL). Arctigenin (at a dose of 13 mg/kg) markedly reduced peanut-specific IgE levels, blocked hypothermia and histamine release in a peanut-allergic mouse model. Arctigenin also significantly reduced IgE production and Th2 cytokines (IL-5, IL-13) by PBMCs. We found 479 differentially expressed genes in PBMCs with arctigenin treatment (p < .001 and fold-change ≥1.5), involving 24 gene ontology terms (p < .001, FDR <0.05); cell division was the most significant. Eleven genes including UBE2C and BCL6 were validated by qPCR. CONCLUSION: Arctigenin markedly inhibited IgE production in U266 cells, peanut-allergic murine model and PBMCs from allergic patients by down-regulating cell division, cell cycle-related genes and up-regulating anti-inflammatory factors.


Subject(s)
Food Hypersensitivity , Peanut Hypersensitivity , Animals , Antibodies, Anti-Idiotypic , Food Hypersensitivity/drug therapy , Furans , Humans , Lignans , Mice , Peanut Hypersensitivity/drug therapy , Plant Extracts/chemistry , Transcriptome
13.
Blood Transfus ; 19(6): 456-466, 2021 11.
Article in English | MEDLINE | ID: mdl-34369863

ABSTRACT

BACKGROUND: Leukoreduction to eliminate mononuclear cells within blood products is necessary to prevent graft-versus-host disease after transfusion. Published reports document low concentrations of mononuclear cells leftover in fresh-frozen plasma products, however the phenotype and the proliferative potential of these cells has not been tested. MATERIALS AND METHODS: We investigated residual cellular components contained within fresh and fresh-frozen plasma products and characterised their proliferative potential in co-cultures with unrelated allogeneic cells. We designed a flow-based assay to phenotype cells and quantify cell division by measuring the dilution of fluorescently labeled protein as cells divide. Leukocytes from consenting donors were purified from fresh liquid or fresh-frozen plasma units and cultured for three to seven days with unrelated irradiated allogeneic targets. RESULTS: We discovered a median of 1.6×107 viable lymphocytes were detectable in fresh plasma units after collection (n=8), comprised of a mixture of CD3+ CD8+ and CD3+ CD4+ cells. Furthermore, we identified a median of 8.4% of live CD3+ plasma lymphocytes divided as early as Day 4 when co-cultured with unrelated allogeneic cells, expanding to a median 88.8% by Day 7 (n=3). Although freezing the plasma product reduced the total number of viable leukocyte cells down to 2.3×105 (n=10), residual naive CD3+ cells were viable and demonstrated division through Day 7 of co-culture. DISCUSSION: The evidence of viable proliferative lymphocytes in fresh and fresh-frozen plasma products derived from centrifugation suggests that additional leukoreduction measures should be investigated to fully eradicate reactive lymphocytes from centrifuged plasma products.


Subject(s)
Hematopoietic Stem Cell Transplantation , Cell Division , Humans , Leukocytes , Lymphocyte Culture Test, Mixed , Lymphocytes
14.
J Clin Immunol ; 41(6): 1146-1153, 2021 08.
Article in English | MEDLINE | ID: mdl-33983545

ABSTRACT

Immunocompromised patients, including those with inborn errors of immunity (IEI), may be at increased risk for severe or prolonged infections with SARS-CoV-2 (Zhu et al. N Engl J Med. 382:727-33, 2020; Guan et al. 2020; Minotti et al. J Infect. 81:e61-6, 2020). While antibody and T cell responses to SARS-CoV-2 structural proteins are well described in healthy convalescent donors, adaptive humoral and cellular immunity has not yet been characterized in patients with antibody deficiency (Grifoni et al. Cell. 181:1489-1501 e1415, 2020; Burbelo et al. 2020; Long et al. Nat Med. 26:845-8, 2020; Braun et al. 2020). Herein, we describe the clinical course, antibody, and T cell responses to SARS-CoV-2 structural proteins in a cohort of adult and pediatric patients with antibody deficiencies (n = 5) and controls (related and unrelated) infected with SARS-CoV-2. Five patients within the same family (3 with antibody deficiency, 2 immunocompetent controls) showed antibody responses to nucleocapsid and spike proteins, as well as SARS-CoV-2 specific T cell immunity at days 65-84 from onset of symptoms. No significant difference was identified between immunocompromised patients and controls. Two additional unrelated, adult patients with common variable immune deficiency were assessed. One did not show antibody response, but both demonstrated SARS-CoV-2-specific T cell immunity when evaluated 33 and 76 days, respectively, following SARS-CoV-2 diagnosis. This report is the first to show robust T cell activity and humoral immunity against SARS-CoV-2 structural proteins in some patients with antibody deficiency. Given the reliance on spike protein in most candidate vaccines (Folegatti et al. Lancet. 396:467-78, 2020; Jackson et al. N Engl J Med. 383:1920-31, 2020), the responses are encouraging. Additional studies will be needed to further define the timing of onset of immunity, longevity of the immune response, and variability of response in immunocompromised patients.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Common Variable Immunodeficiency/immunology , SARS-CoV-2/physiology , T-Lymphocytes/immunology , Adolescent , Adult , Carrier State , Cells, Cultured , Child , Female , Humans , Immunity, Humoral , Lymphocyte Activation , Male , Middle Aged , Mutation/genetics , Pedigree , Transmembrane Activator and CAML Interactor Protein/genetics , Exome Sequencing , Young Adult
15.
J Immunother Cancer ; 9(3)2021 03.
Article in English | MEDLINE | ID: mdl-33757986

ABSTRACT

BACKGROUND: MYC oncogene is deregulated in 70% of all human cancers and is associated with multiple oncogenic functions including immunosuppression in the tumor microenvironment. The role of MYC in the immune microenvironment of neuroblastoma and melanoma is investigated and the effect of targeting Myc on immunogenicity of cancer cells is evaluated. METHODS: Immune cell infiltrates and immunogenic pathway signatures in the context of MYCN amplification were analyzed in human neuroblastoma tumors and in metastatic melanoma. Dose response and cell susceptibility to MYC inhibitors (I-BET726 and JQ1) were determined in mouse cell lines. The influence of downregulating Myc in tumor cells was characterized by immunogenic pathway signatures and functional assays. Myc-suppressed tumor cells were used as whole cell vaccines in preclinical neuroblastoma and melanoma models. RESULTS: Analysis of immune phenotype in human neuroblastoma and melanoma tumors revealed that MYCN or c-MYC amplified tumors respectively are associated with suppressed immune cell infiltrates and functional pathways. Targeting Myc in cancer cells with I-BET726 and JQ1 results in cell cycle arrest and induces cell immunogenicity. Combining vaccination of Myc-inhibited tumor cells with checkpoint inhibition induced robust antitumor immunity and resulted in therapeutic cancer vaccine therapy in mouse neuroblastoma tumors. Despite vigorous antitumor immunity in the mouse melanoma model, upregulation of immunosuppressive pathways enabled tumor escape. CONCLUSIONS: This study demonstrates that the Myc oncogene is an appropriate target for inducing tumor cell immunogenicity and suggests that Myc-suppressed whole tumor cells combined with checkpoint therapy could be used for formulating a personalized therapeutic tumor vaccine.


Subject(s)
Aminoquinolines/pharmacology , Azepines/pharmacology , Benzoates/pharmacology , Cancer Vaccines/pharmacology , Immune Checkpoint Inhibitors/pharmacology , Melanoma, Experimental/drug therapy , Neuroblastoma/drug therapy , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Skin Neoplasms/drug therapy , Triazoles/pharmacology , Tumor Escape/drug effects , Tumor Microenvironment/immunology , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Coculture Techniques , Databases, Genetic , Gene Amplification , Gene Expression Regulation, Neoplastic , Humans , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Melanoma, Experimental/metabolism , Mice , Mice, Inbred C57BL , Neuroblastoma/genetics , Neuroblastoma/immunology , Neuroblastoma/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction , Skin Neoplasms/genetics , Skin Neoplasms/immunology , Skin Neoplasms/metabolism , Vaccination
16.
Cytotherapy ; 23(1): 65-76, 2021 01.
Article in English | MEDLINE | ID: mdl-32921560

ABSTRACT

Infusion of viral-specific T cells (VSTs) is an effective treatment for viral infection after stem cell transplant. Current manufacturing approaches are rapid, but growth conditions can still be further improved. To optimize VST cell products, the authors designed a high-throughput flow cytometry-based assay using 40 cytokine combinations in a 96-well plate to fully characterize T-cell viability, function, growth and differentiation. Peripheral blood mononuclear cells (PBMCs) from six consenting donors were seeded at 100 000 cells per well with pools of cytomegalovirus peptides from IE1 and pp65 and combinations of IL-15, IL-6, IL-21, interferon alpha, IL-12, IL-18, IL-4 and IL-7. Ten-day cultures were tested by 13-color flow cytometry to evaluate viable cell count, lymphocyte phenotype, memory markers and interferon gamma (IFNγ) and tumor necrosis factor alpha (TNFα) expression. Combinations of IL-15/IL-6 and IL-4/IL-7 were optimal for the expansion of viral-specific CD3+ T cells, (18-fold and 14-fold, respectively, compared with unstimulated controls). CD8+ T cells expanded 24-fold in IL-15/IL-6 and 9-fold in IL-4/IL-7 cultures (P < 0.0001). CD4+ T cells expanded 27-fold in IL-4/IL-7 and 15-fold in IL-15/IL-6 (P < 0.0001). CD45RO+ CCR7- effector memory (CD45RO+ CCR7- CD3+), central memory (CD45RO+ CCR7+ CD3+), terminal effector (CD45RO- CCR7- CD3+), and naive (CD45RO- CCR7+ CD3+). T cells were the preponderant cells (76.8% and 72.3% in IL-15/IL-6 and IL-15/IL-7 cultures, respectively). Cells cultured in both cytokine conditions were potent, with 19.4% of CD3+ cells cultured in IL-15/IL-6 producing IFNγ (7.6% producing both TNFα and IFNγ) and 18.5% of CD3+ cells grown in IL-4/IL-7 producing IFNγ (9% producing both TNFα and IFNγ). This study shows the utility of this single-plate assay to rapidly identify optimal growth conditions for VST manufacture using only 107 PBMCs.


Subject(s)
Antigens, Viral/immunology , Cytokines/pharmacology , T-Lymphocytes/drug effects , T-Lymphocytes/physiology , Virus Diseases/therapy , Antibodies/metabolism , Cell- and Tissue-Based Therapy , Cells, Cultured , Flow Cytometry , Humans
17.
Front Immunol ; 12: 793197, 2021.
Article in English | MEDLINE | ID: mdl-35116027

ABSTRACT

Background: Despite similar rates of infection, adults and children have markedly different morbidity and mortality related to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Compared to adults, children have infrequent severe manifestations of acute infection but are uniquely at risk for the rare and often severe Multisystem Inflammatory Syndrome in Children (MIS-C) following infection. We hypothesized that these differences in presentation are related to differences in the magnitude and/or antigen specificity of SARS-CoV-2-specific T cell (CST) responses between adults and children. We therefore set out to measure the CST response in convalescent adults versus children with and without MIS-C following SARS-CoV-2 infection. Methods: CSTs were expanded from blood collected from convalescent children and adults post SARS-CoV-2 infection and evaluated by intracellular flow cytometry, surface markers, and cytokine production following stimulation with SARS-CoV-2-specific peptides. Presence of serum/plasma antibody to spike and nucleocapsid was measured using the luciferase immunoprecipitation systems (LIPS) assay. Findings: Twenty-six of 27 MIS-C patients, 7 of 8 non-MIS-C convalescent children, and 13 of 14 adults were seropositive for spike and nucleocapsid antibody. CST responses in MIS-C patients were significantly higher than children with uncomplicated SARS-CoV-2 infection, but weaker than CST responses in convalescent adults. Interpretation: Age-related differences in the magnitude of CST responses suggest differing post-infectious immunity to SARS-CoV-2 in children compared to adults post uncomplicated infection. Children with MIS-C have CST responses that are stronger than children with uncomplicated SARS-CoV-2 infection and weaker than convalescent adults, despite near uniform seropositivity.


Subject(s)
COVID-19/complications , SARS-CoV-2/immunology , Systemic Inflammatory Response Syndrome/immunology , T-Lymphocytes/immunology , Adolescent , Adult , Antibodies, Viral/immunology , COVID-19/immunology , Child , Child, Preschool , Convalescence , Coronavirus Nucleocapsid Proteins/immunology , Female , Humans , Infant , Male , Middle Aged , Phosphoproteins/immunology , Spike Glycoprotein, Coronavirus/immunology
18.
Blood ; 136(25): 2905-2917, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33331927

ABSTRACT

T-cell responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been described in recovered patients, and may be important for immunity following infection and vaccination as well as for the development of an adoptive immunotherapy for the treatment of immunocompromised individuals. In this report, we demonstrate that SARS-CoV-2-specific T cells can be expanded from convalescent donors and recognize immunodominant viral epitopes in conserved regions of membrane, spike, and nucleocapsid. Following in vitro expansion using a good manufacturing practice-compliant methodology (designed to allow the rapid translation of this novel SARS-CoV-2 T-cell therapy to the clinic), membrane, spike, and nucleocapsid peptides elicited interferon-γ production, in 27 (59%), 12 (26%), and 10 (22%) convalescent donors (respectively), as well as in 2 of 15 unexposed controls. We identified multiple polyfunctional CD4-restricted T-cell epitopes within a highly conserved region of membrane protein, which induced polyfunctional T-cell responses, which may be critical for the development of effective vaccine and T-cell therapies. Hence, our study shows that SARS-CoV-2 directed T-cell immunotherapy targeting structural proteins, most importantly membrane protein, should be feasible for the prevention or early treatment of SARS-CoV-2 infection in immunocompromised patients with blood disorders or after bone marrow transplantation to achieve antiviral control while mitigating uncontrolled inflammation.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , Cell Culture Techniques/methods , Immunotherapy, Adoptive/methods , SARS-CoV-2/immunology , Adult , Aged , Epitopes, T-Lymphocyte/immunology , Female , Humans , Immunodominant Epitopes/immunology , Male , Membrane Proteins/immunology , Middle Aged , Viral Proteins/immunology , Young Adult , COVID-19 Drug Treatment
19.
Front Immunol ; 11: 575977, 2020.
Article in English | MEDLINE | ID: mdl-33123159

ABSTRACT

Human Parainfluenza Virus-3 (HPIV3) causes severe respiratory illness in immunocompromised patients and lacks approved anti-viral therapies. A phase I study of adoptively transferred virus-specific T-cells (VSTs) targeting HPIV3 following bone marrow transplantation is underway (NCT03180216). We sought to identify immunodominant epitopes within HPIV3 Matrix protein and their cross-reactivity against related viral proteins. VSTs were generated from peripheral blood of healthy donors by ex-vivo expansion after stimulation with a 15-mer peptide library encompassing HPIV3 matrix protein. Epitope mapping was performed using IFN-γ ELIspot with combinatorial peptide pools. Flow cytometry was used to characterize products with intracellular cytokine staining. In 10 VST products tested, we discovered 12 novel immunodominant epitopes. All products recognized an epitope at the C-terminus. On IFN-γ ELISpot, individual peptides eliciting activity demonstrated mean IFN-γ spot forming units per well (SFU)/1x105 cells of 115.5 (range 24.5-247.5). VST products were polyfunctional, releasing IFN-γ and TNF-α in response to identified epitopes, which were primarily HLA Class II restricted. Peptides from Human Parainfluenza Virus-1 corresponding to the HPIV3 epitopes showed cross-reactivity for HPIV1 in 11 of 12 tested epitopes (mean cross reactivity index: 1.19). Characterization of HPIV3 epitopes may enable development of third-party VSTs to treat immune suppressed patients with HPIV infection.


Subject(s)
Adoptive Transfer , Immunodominant Epitopes , Parainfluenza Virus 1, Human/immunology , Parainfluenza Virus 3, Human/immunology , Respirovirus Infections/therapy , T-Lymphocytes/transplantation , Viral Matrix Proteins/immunology , Cells, Cultured , Clinical Trials, Phase I as Topic , Cross Reactions , Enzyme-Linked Immunospot Assay , Epitope Mapping , Host-Pathogen Interactions , Humans , Interferon-gamma/metabolism , Interferon-gamma Release Tests , Parainfluenza Virus 1, Human/pathogenicity , Parainfluenza Virus 3, Human/pathogenicity , Respirovirus Infections/immunology , Respirovirus Infections/metabolism , Respirovirus Infections/virology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
20.
Laryngoscope Investig Otolaryngol ; 5(3): 536-545, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32596498

ABSTRACT

BACKGROUND: Chronic otitis media (COM) is characterized by middle ear fluid predominantly containing cytokines, Nontypeable haemophilus influenzae (NTHi), the mucin MUC5B, and neutrophil extracellular traps (NETs). NETs consist of extracellular DNA coated with antibacterial proteins such as myeloperoxidase (MPO) and citrullinated histone 3 (CitH3). NETs can damage tissues and sustain inflammation. Our study aimed to develop an in vitro model of NETosis, testing COM inductors. METHODS: NETosis was evaluated in fresh blood human neutrophils attached to collagen-coated plates and in suspension exposed to phorbol myristate acetate (PMA) as a control, and COM relevant mediators. Confocal microscopy, DNA fluorescence assay and flow cytometry were used to quantify NETosis. RESULTS: PMA exposure induced DNA, MPO, and CitH3 by immunofluorescence (IF) most significantly at 3 hours (3.8-fold for DAPI, 7.6-fold for MPO, and 6.9-fold for CitH3, all P < .05). IL-8 and TNF-α cytokines showed milder increases of DAPI, MPO, and CitH3 positive cells. NTHi had no effect on these NETs markers. Purified salivary MUC5B (10 to 40 µg/mL) produced potent increases, comparable to PMA. A composite NET score summing the fold-increases for DAPI, MPO, and CitH3 demonstrated PMA at 13.6 to 19 relative to control set at 1; and MUC5B at 8.6 to 16.3 (all P < .05). IL-8 and TNF-α showed scores of 5.4 and 3, respectively, but these were not statistically significant. CONCLUSION: We developed a reliable in vitro assay for NETosis which demonstrated that salivary MUC5B is a potent inductor of NETs whereas IL-8, TNF-α, live and lyzed NTHi demonstrated minimal to no NETosis. LEVEL OF EVIDENCE: NA.

SELECTION OF CITATIONS
SEARCH DETAIL
...