Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Parasit Vectors ; 13(1): 109, 2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32111243

ABSTRACT

BACKGROUND: Schistosomiasis continues to inflict significant morbidity and mortality in the tropical and subtropical regions of the world. The disease endemicity overlaps with the transmission of other parasitic diseases. Despite the ubiquity of polyparasitism in tropical regions, particularly in rural communities, little is known about the impact of multiple helminth infections on disease progression. In this pilot study, we describe the influence of chronic Trichuris trichiura infection on Schistosoma mansoni egg-induced hepatopathology in infected baboons. METHODS: Baboons with or without underlying whipworm infection were challenged with S. mansoni cercariae to establish schistosomiasis. Adult S. mansoni worms were recovered by perfusion and enumerated, hepatic granulomas were quantified via light microscopy, and transcriptional profiling of tissues were completed using RNA sequencing technologies. RESULTS: Co-infection with both S. mansoni and T. trichiura resulted in higher female schistosome worm burden and significantly larger liver granuloma sizes. Systems biology analyses of peripheral blood mononuclear cells (PBMC) revealed pathways associated with increased liver damage in co-infected baboons. CONCLUSIONS: Underlying chronic whipworm infection intensified schistosome egg-induced liver pathology in infected baboons. RNA-Seq analysis provided insight into pathways associated with increased liver damage, corroborating histological findings.


Subject(s)
Coinfection/pathology , Coinfection/veterinary , Liver Diseases, Parasitic/pathology , Liver Diseases, Parasitic/veterinary , Schistosomiasis/pathology , Schistosomiasis/veterinary , Trichuriasis/pathology , Trichuriasis/veterinary , Animal Diseases/parasitology , Animal Diseases/pathology , Animals , Chronic Disease , Coinfection/parasitology , Female , Granuloma/pathology , Humans , Liver/metabolism , Liver/parasitology , Liver/pathology , Liver Diseases, Parasitic/parasitology , Male , Papio , Parasite Egg Count , Pilot Projects , Primates , Schistosoma mansoni , Schistosomiasis/parasitology , Transcriptome , Trichuriasis/parasitology , Trichuris
2.
Article in English | MEDLINE | ID: mdl-32154190

ABSTRACT

For decades, mass drug treatment with praziquantel (PZQ) has been utilized to treat schistosomiasis, yet reinfection and the risk of drug resistance are among the various factors precluding successful elimination of schistosomiasis. Tractable models that replicate "real world" field conditions are crucial to effectively evaluate putative schistosomiasis vaccines. Herein, we describe the cellular immune responses and cytokine expression profiles under field conditions that include prior infection with schistosomes followed by treatment with PZQ. Baboons were exposed to Schistosoma mansoni cercariae through trickle infection over 5 weeks, allowed for chronic disease to develop, and then treated with PZQ. Peripheral blood mononuclear cells (PBMCs) were monitored for cellular immune response(s) at each disease stage and PZQ therapy. After initial infection and during chronic disease, there was an increase in non-classical monocytes, NK and NKT cells while the CD4:CD8 T cell ratio inverted from a 2:1 to 1:2.5. The cytokine expressions of PBMCs after trickle infections were polarized more toward a Th2 response with a gradual increase in Th1 cytokine expression at chronic disease stage. Following PZQ treatment, with the exception of an increase in B cells, immune cell populations reverted back toward naïve levels; however, expression of almost all Th1, Th2, and Th17 cytokines was significantly increased. This preliminary study is the first to follow the cellular immune response and cytokine expression profiles in a non-human primate model simulating field conditions of schistosomiasis and PZQ therapy, providing a promising reference in predicting the immune response to future vaccines for schistosomiasis.


Subject(s)
Anthelmintics , Schistosomiasis , Animals , Anthelmintics/therapeutic use , Leukocytes, Mononuclear , Praziquantel/therapeutic use , Primates , Schistosomiasis/drug therapy , Schistosomiasis/veterinary
3.
Ann N Y Acad Sci ; 1425(1): 38-51, 2018 08.
Article in English | MEDLINE | ID: mdl-30133707

ABSTRACT

Schistosomiasis is of public health importance to an estimated one billion people in 79 countries. A vaccine is urgently needed. Here, we report the results of four independent, double-blind studies of an Sm-p80-based vaccine in baboons. The vaccine exhibited potent prophylactic efficacy against transmission of Schistosoma mansoni infection and was associated with significantly less egg-induced pathology, compared with unvaccinated control animals. Specifically, the vaccine resulted in a 93.45% reduction of pathology-producing female worms and significantly resolved the major clinical manifestations of hepatic/intestinal schistosomiasis by reducing the tissue egg-load by 89.95%. A 35-fold decrease in fecal egg excretion in vaccinated animals, combined with an 81.51% reduction in hatching of eggs into the snail-infective stage (miracidia), demonstrates the parasite transmission-blocking potential of the vaccine. Substantially higher Sm-p80 expression in female worms and Sm-p80-specific antibodies in vaccinated baboons appear to play an important role in vaccine-mediated protection. Preliminary analyses of RNA sequencing revealed distinct molecular signatures of vaccine-induced effects in baboon immune effector cells. This study provides comprehensive evidence for the effectiveness of an Sm-p80-based vaccine for schistosomiasis.


Subject(s)
Protozoan Vaccines , Schistosomiasis , Animals , Female , Male , Antibodies, Protozoan/biosynthesis , Antibodies, Protozoan/immunology , Double-Blind Method , Gene Expression Profiling , Papio , Parasite Egg Count , Protozoan Proteins/immunology , Protozoan Vaccines/administration & dosage , Protozoan Vaccines/genetics , Protozoan Vaccines/immunology , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Schistosoma mansoni/immunology , Schistosomiasis/prevention & control , Schistosomiasis/transmission , Schistosomiasis/veterinary , Transcription, Genetic
4.
J Investig Med ; 66(8): 1124-1132, 2018 12.
Article in English | MEDLINE | ID: mdl-29997146

ABSTRACT

Sm-p80, the large subunit of Schistosoma mansoni calpain, is a leading candidate for a schistosomiasis vaccine. The prophylactic and antifecundity efficacy of Sm-p80 has been tested in three animal models (mouse, hamster and baboon) using a multitude of vaccine formulations and approaches. In our continual effort to enhance the vaccine efficacy, in this study, we have utilized the adjuvant, synthetic hexa-acylated lipid A derivative, glucopyranosyl lipid A (GLA) formulated in aluminum (GLA-Alum) with recombinant Sm-p80. The rSm-p80+GLA-Alum immunization regimen provided 33.33%-53.13% reduction in worm burden in the mouse model and 38% worm burden reduction in vaccinated baboons. Robust Sm-p80-specific immunoglobulin (Ig)G, IgG1, IgG2a and IgM responses were observed in all immunized animals. The rSm-p80+GLA-Alum coadministration induced a mix of T-helper (Th) cells (Th1, Th2 and Th17) responses as determined via the release of interleukin (IL)-2, IL-4, IL-18, IL-21, IL-22 and interferon-γ.


Subject(s)
Adjuvants, Immunologic/pharmacology , Alum Compounds/pharmacology , Antigens, Helminth/immunology , Glucosides/immunology , Lipid A/immunology , Schistosoma mansoni/immunology , Toll-Like Receptor 4/agonists , Vaccines/immunology , Animals , Cell Proliferation , Cytokines/biosynthesis , Cytokines/genetics , Female , Immunity, Humoral , Mice, Inbred C57BL , Papio , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recombinant Proteins/metabolism , Schistosomiasis mansoni/immunology , Schistosomiasis mansoni/parasitology , T-Lymphocytes, Helper-Inducer/immunology , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...