Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 13(4): e9923, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37091555

ABSTRACT

The degree to which individuals adjust foraging behavior in response to environmental variability can impact foraging success, leading to downstream impacts on fitness and population dynamics. We examined the foraging flexibility, average daily energy expenditure, and foraging success of an ice-associated Arctic seabird, the thick-billed murre (Uria lomvia) in response to broad-scale environmental conditions at two different-sized, low Arctic colonies located <300 km apart. First, we compared foraging behavior (measured via GPS units), average daily energy expenditure (estimated from GPS derived activity budgets), and foraging success (nutritional state measured via nutritional biomarkers pre- and post- GPS deployment) of murres at two colonies, which differ greatly in size: 30,000 pairs breed on Coats Island, Nunavut, and 400,000 pairs breed on Digges Island, Nunavut. Second, we tested whether colony size within the same marine ecosystem altered foraging behavior in response to broad-scale environmental variability. Third, we tested whether environmentally induced foraging flexibility influenced the foraging success of murres. Murres at the larger colony foraged farther and longer but made fewer trips, resulting in a lower nutritional state and lower foraging success compared to birds at the smaller colony. Foraging behavior and foraging success varied in response to environmental variation, with murres at both colonies making longer, more distant foraging trips in high ice regimes during incubation, suggesting flexibility in responding to environmental variability. However, only birds at the larger colony showed this same flexibility during chick rearing. Foraging success at both colonies was higher during high ice regimes, suggesting greater prey availability. Overall, murres from the larger colony exhibited lower foraging success, and their foraging behavior showed stronger responses to changes in broad-scale conditions such as sea ice regime. Taken together, this suggests that larger Arctic seabird colonies have higher behavioral and demographic sensitivity to environmental change.

2.
Sci Rep ; 11(1): 2493, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33510235

ABSTRACT

Sympatric species must sufficiently differentiate aspects of their ecological niche to alleviate complete interspecific competition and stably coexist within the same area. Seabirds provide a unique opportunity to understand patterns of niche segregation among coexisting species because they form large multi-species colonies of breeding aggregations with seemingly overlapping diets and foraging areas. Recent biologging tools have revealed that colonial seabirds can differentiate components of their foraging strategies. Specifically, small, diving birds with high wing-loading may have small foraging radii compared with larger or non-diving birds. In the Gulf of St-Lawrence in Canada, we investigated whether and how niche differentiation occurs in four incubating seabird species breeding sympatrically using GPS-tracking and direct field observations of prey items carried by adults to chicks: the Atlantic puffin (Fratercula arctica), razorbill (Alca torda), common murre (Uria aalge), and black-legged kittiwake (Rissa tridactyla). Although there was overlap at foraging hotspots, all species differentiated in either diet (prey species, size and number) or foraging range. Whereas puffins and razorbills consumed multiple smaller prey items that were readily available closer to the colony, murres selected larger more diverse prey that were accessible due to their deeper diving capability. Kittiwakes compensated for their surface foraging by having a large foraging range, including foraging largely at a specific distant hotspot. These foraging habitat specialisations may alleviate high interspecific competition allowing for their coexistence, providing insight on multispecies colonial living.


Subject(s)
Charadriiformes/physiology , Ecosystem , Feeding Behavior/physiology , Sympatry , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...