Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 242(Pt 2): 124816, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37182623

ABSTRACT

Starch nanocrystals (SNCs) are tiny particles that possess unique qualities due to their small size, such as increased crystallinity, thin sheet structure, low permeability, and strong resistance to digestion. Although sago starch nanocrystals (SNCs) are naturally hydrophilic, their properties can be modified through chemical modifications to make them more versatile for various applications. In this study, the esterification process was used to modify SNCs using lauroyl chloride (LC) to enhance their surface properties. Three different ratios of LC to SNC were tested to determine the impact on the modified SNC (mSNC). The chemical changes in the mSNC were analyzed using FTIR and 1H NMR spectroscopy. ##The results showed that as the amount of LC increased, the degree of substitution (DS) also increased, which reduced the crystallinity of the mSNC and its thermal stability. However, the esterification process also improved the hydrophobicity of the SNC, making it more amphiphilic. The emulsification capabilities of the mSNC were investigated using a Pickering emulsion, and the results showed that the emulsion made from mSNC-1.0 had better stability than the one made from pristine SNC. This study highlights the potential of SNC as a particle emulsifier and demonstrates how esterification can improve its emulsification capabilities.


Subject(s)
Nanoparticles , Starch , Starch/chemistry , Emulsions/chemistry , Laurates , Particle Size , Emulsifying Agents/chemistry , Nanoparticles/chemistry , Chlorides
2.
Mar Pollut Bull ; 189: 114762, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36870137

ABSTRACT

Plastic can be degraded into microplastic (<5 mm) and has been polluting worldwide marine environment and negatively impact human health. Microplastics in marine organisms are still understudied in Malaysia, let alone from a subclass Elasmobranchii. Five tropical shark species (Carcharhinus dussumieri, Carcharhinus sorrah, Chiloscyllium hasseltii, Chiloscyllium punctatum, and Scoliodon laticaudus) were examined for the presence of microplastics. 74 sharks were sampled from the local wet market and 100 % of samples contained microplastics. A total of 2211 plastic particles were found in gastrointestinal tracts (GIT) and gills, where 29.88 ± 2.34 particles per shark (mean ± SEM). Black (40.07 %) and fiber (84.44 %) microplastics were the most dominant. Extracted microplastic sizes ranged from 0.007 mm to 4.992 mm. This study suggests that microplastic uptake is gender-related for some shark species. A subsample of microplastics (10 %) was used for polymer type identification, where polyester was recorded the highest (43.95 %).


Subject(s)
Sharks , Water Pollutants, Chemical , Animals , Humans , Microplastics , Plastics , Environmental Monitoring , Malaysia , Swimming , Water Pollutants, Chemical/analysis
3.
Waste Manag Res ; 41(7): 1219-1226, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36883418

ABSTRACT

In recent years, the environmental pollution of microplastics (MPs) has increasingly drawn our attention. MPs are small fragments of plastics that are commonly dispersed in the environment. The accumulation of environmental MPs is due to population growth and urbanization, while natural disasters such as hurricanes, flooding and human activity may influence their distribution. The leaching of chemicals from MPs raises a significant safety problem and environmental approaches aimed at reducing the use and recycling of plastics, with the replacement by bioplastics and wastewater treatment developments are called for. This summary also helps in demonstrating the connection between terrestrial and freshwater MPs and wastewater treatment plants as the major contributors to environmental MPs by discharges of sludge and effluent. More research on the classification, detection, characterization and toxicity of MPs are essential to enable greater options and solutions. Control initiatives need to intensify the comprehensive study of MP waste control and management information programmes in the fields of institutional engagement, technological research and development, legislation and regulation. A comprehensive quantitative analysis approach for MPs should be created in the future, and more reliable traceability analysis methods should be built to examine further its environmental activity and existence, where this should be done to improve scientific research on MP pollution in terrestrial, freshwater and marine environments and hence, develop more scientific and rational control policies.


Subject(s)
Microplastics , Water Pollutants, Chemical , Humans , Plastics/analysis , Plastics/chemistry , Plastics/toxicity , Water Pollutants, Chemical/analysis , Environmental Monitoring , Environmental Pollution
4.
Sci Total Environ ; 799: 149457, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34375867

ABSTRACT

Microplastics are tiny plastic particles with size below 5 mm, prevalence in marine environments and the occurrence have been reported in commercial marine fish worldwide. Microplastics' abilities to absorb various marine contaminants raised considerable concern on their role as a vector to spread harmful pollutants to the alienated environment. This study focussed on the occurrence of microplastics in gastrointestinal tract (GIT) and gills of 158 fishes across 16 species from two locations in Malaysia coastal waters. Microplastics were detected approximately 86% in the GIT and 92% in the gills of examined fish. High incident of microplastics was detected in fishes from the area that is close to an urban area with average microplastics incident reaching up to 9.88 plastics items/individuals. Meanwhile, only 5.17 microplastics per individual were recorded in fishes from a less urbanised area. Isolated microplastics comprised 80.2% of fibres, 17.7% of fragments and the remaining was derived from filaments (3.1%). Infrared and Raman spectroscopy analysis of selected microplastics revealed the chemical composition of microplastics which comprised of polyethene (PE), polypropylene (PP), acrylonitrile butadiene styrene (ABS), polystyrene (PS) and polyethylene terephthalates (PET). FESEM images indicate, different surface characteristics of microplastics as a result of environmental exposure. Further, elemental analysis using EDX for green PE fragments showed the uneven distribution of chromium (Cr) and iron (Fe) on the surface, suggesting the adherence of heavy metals on the surface of microplastics. Overall findings indicate the widespread distribution of microplastics in commercial marine fishes from Malaysia waters and could potentially lead to human exposure through fish consumption.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Environmental Monitoring , Fishes , Gastrointestinal Tract , Gills/chemistry , Humans , Malaysia , Plastics , Water Pollutants, Chemical/analysis
5.
Molecules ; 26(15)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34361580

ABSTRACT

The presence of organic dyes from industrial wastewater can cause pollution and exacerbate environmental problems; therefore, in the present work, activated carbon was synthesized from locally available oil palm trunk (OPT) biomass as a low-cost adsorbent to remove synthetic dye from aqueous media. The physical properties of the synthesized oil palm trunk activated carbon (OPTAC) were analyzed by SEM, FTIR-ATR, and XRD. The concurrent effects of the process variables (adsorbent dosage (g), methylene blue (MB) concentration (mg/L), and contact time (h)) on the MB removal percentage from aqueous solution were studied using a three-factor three-level Box-Behnken design (BBD) of response surface methodology (RSM), followed by the optimization of MB adsorption using OPTAC as the adsorbent. Based on the results of the analysis of variance (ANOVA) for the three parameters considered, adsorbent dosage (X1) is the most crucial parameter, with an F-value of 1857.43, followed by MB concentration (X2) and contact time (X3) with the F-values of 95.60 and 29.48, respectively. Furthermore, the highest MB removal efficiency of 97.9% was achieved at the optimum X1, X2, and X3 of 1.5 g, 200 mg/L, and 2 h, respectively.

6.
J Pharm Sci ; 110(12): 3907-3918, 2021 12.
Article in English | MEDLINE | ID: mdl-34403653

ABSTRACT

Nano-colloidal systems formulated from amphiphilically-modified polysaccharides (degree of modification 16.6%) are focus of prominent study due to their potential to augment active penetration across the skin. Here we report the synthesis of amphiphilically-modified guar gum (GBE-GG) prepared by grafting with glycidol butyl ether (GBE), which were subsequently formed into nanocarriers and loaded with α-arbutin (22.3% loading). The monodispersed and close-to-spherical nanocarriers (size range 239-297 nm) formed via cross-linking were adequately stable mainly at low temperature (4 °C) under physiological pH condition. α-arbutin was released from GBE-GG NPs in a more sustained manner and the release profiles can be accurately represented by the 1st order kinetic model. In-vitro interactions on immortalised human keratinocytes (HaCaT) cells revealed an increase in biological membrane permeability as well as the absence of cellular toxicity at application pertinent concentrations. No substantial haemolytic activity appeared and flow cytometry analysis revealed effective cellular uptake, suggesting their potential as promising nanocarriers for percutaneous delivery that warrants further comprehensive research.


Subject(s)
Arbutin , Plant Gums , Drug Carriers , Drug Delivery Systems , Galactans , Humans , Mannans
7.
Int J Biol Macromol ; 182: 197-206, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33774073

ABSTRACT

This study presents the isolation of SNC from sago starch and its performance as proficient particle emulsifier. It highlights the impact of SNC on the stability and rheological properties of oil-in-water (o/w) emulsions. The percentage yield of the SNC obtained was equivalent to 25 ± 0.1% (w/w) with particle diameters ranging from 25 to 100 nm. A series of Pickering emulsion at different ratios of oil (5%-35% v/v) and SNC (1%-4% w/v) was prepared for further investigations. The mean droplet diameter of emulsions obtained was ranged from 19.12 to 35.96 µm, confirming the effects of both SNC and oil content on the droplet's diameter distribution. Formulations with 4.0 wt% of SNC exhibited the maximum stability against coalescence. Results obtained have justified that the SNC can be used as an alternative solid emulsifier in producing stable emulsion with desired properties for various applications.


Subject(s)
Arecaceae/chemistry , Emulsions/chemistry , Nanoparticles/chemistry , Starch/chemistry , Emulsifying Agents/chemistry , Rheology
8.
Chemosphere ; 260: 127649, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32688323

ABSTRACT

Post-digestion treatment is an important step during sample preparation to facilitate the removal of undigested materials for better detection of ingested microplastics. Sieving, density separation with zinc chloride solution (ZnCl2), and oil extraction protocol (OEP) have been introduced in separating microplastics from sediments. The clean-up methods are rarely highlighted in previous studies, especially in the separation of microplastics from marine biota. Thus, this study proposed and compared the suitability of three techniques, which can reduce the number of undigested particles from the digestate of GIT and gills. Our result has shown excellent removal of non-plastics materials and reduces the coloration of filter paper in all treated samples. Both sieving and density separation achieved optimum post-digestion efficiencies of >95% for both GIT and gill samples, which former showed no effect on polymer integrity. Additionally, high recovery rate was obtained for the larger size microplastics (>500 µm) with approximately 97.7% (GIT) and 95.7% (gill), respectively. Exposure to the ZnCl2 solution led to a significant loss of smaller size PET and changed the absorption spectrums of all tested polymers. Particle morphology determined by SEM revealed such exposure eroded the surface of PET fragments and elemental analysis has shown detectable peaks of zinc and chlorine appeared. Low microplastics recoveries were achieved through OPE and residue of oil was observed from the infrared spectrum of all tested polymer. The findings demonstrate sieving with size fractioning can provide exceptional removal of non-plastics materials from the digestate of GIT and gill samples.


Subject(s)
Gastrointestinal Tract/chemistry , Microplastics/analysis , Water Pollutants, Chemical/analysis , Animals , Biota , Environmental Monitoring/methods , Fishes , Gills/chemistry , Plastics/analysis , Polymers
9.
Langmuir ; 36(27): 7908-7915, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32551692

ABSTRACT

Nanostructures play an important role in targeting sparingly water-soluble drugs to specific sites. Because of the structural flexibility and stability, the use of template microemulsions (µEs) can produce functional nanopharmaceuticals of different sizes, shapes, and chemical properties. In this article, we report a new volatile oil-in-water (o/w) µE formulation comprising ethyl acetate/ethanol/brij-35/water to obtain the highly water-dispersible nanoparticles of an antihyperlipidemic agent, ezetimibe (EZM-NPs), to enhance its dissolution profile. A pseudoternary phase diagram was delineated in a specified brij-35/ethanol ratio (1:1) to describe the transparent, optically isotropic domain of the as-formulated µE. The water-dilutable µE formulation, comprising an optimum composition of ethyl acetate (18.0%), ethanol (25.0%), brij-35 (25.0%), and water (32.0%), showed a good dissolvability of EZM around 4.8 wt % at pH 5.2. Electron micrographs showed a fine monomodal collection of EZM-loaded µE droplets (∼45 nm) that did not coalesce even after lyophilization, forming small spherical EZM-NPs (∼60 nm). However, the maturity of nanodrug droplets observed through dynamic light scattering suggests the affinity of EZM to the nonpolar microenvironment, which was further supported through peak-to-peak correlation of infrared analysis and fluorescence measurements. Moreover, the release profile of the as-obtained EZM-nanopowder increased significantly >98% in 30 min, which indicates that a reduced drug concentration will be needed for capsules or tablets in the future and can be simply incorporated into the multidosage formulation of EZM.


Subject(s)
Hypolipidemic Agents , Water , Emulsions , Ezetimibe , Solubility
10.
J Sci Food Agric ; 100(3): 1012-1021, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31646636

ABSTRACT

BACKGROUND: Wines are produced via the alcoholic fermentation of suitable substrates, usually sugar (sugar cane, grapes) and carbohydrates (wheat, grain). However, conventional alcoholic fermentation is limited by the inhibition of yeast by ethanol produced, usually at approximately 13-14%. Aside from that, soursop fruit is a very nutritious fruit, although it is highly perishable, and thus produces a lot of wastage. Therefore, the present study aimed to produce fermented soursop juice (soursop wine), using combination of two starter cultures, namely mushroom (Pleurotus pulmonarius) and yeast (Saccharomyces cerevisiae), as well as to determine the effects of fermentation on the physicochemical and antioxidant activities of fermented soursop juice. Optimisation of four factors (pH, temperature, time and culture ratio) using response surface methodology were performed to maximise ethanol production. RESULTS: The optimised values for alcoholic fermentation were pH 4.99, 28.29 °C, 131 h and a 0.42 culture ratio (42:58, P. pulmonarius mycelia:S. cerevisiae) with a predicted ethanol concentration of 22.25%. Through a verification test, soursop wine with 22.29 ± 0.52% ethanol was produced. The antioxidant activities (1,1-diphenyl-2-picrylhydrazyl and ferric reducing antioxidant power) showed a significant (P < 0.05) increase from the soursop juice to soursop wine. CONCLUSION: The alternative fermentation technique using yeast and mushroom has successfully been optimised, with an increased ethanol production in soursop wine and higher antioxidant activities. Ultimately, this finding has high potential for application in the brewing industry to enhance the fermentation process, as well as in the development of an innovative niche product, reducing wastage by converting the highly-perishable fruit into wine with a more stable and longer shelf-life. © 2019 Society of Chemical Industry.


Subject(s)
Annona/microbiology , Food Microbiology/methods , Pleurotus/metabolism , Saccharomyces cerevisiae/metabolism , Annona/metabolism , Antioxidants/analysis , Antioxidants/metabolism , Ethanol/analysis , Ethanol/metabolism , Fermentation , Wine/analysis
11.
Article in English | MEDLINE | ID: mdl-30954801

ABSTRACT

Carbon dots (C-dots) were used to study the binding mechanisms with serum protein, bovine serum albumin (BSA) by using two notable binding systems known as non-covalent and covalent interaction. Interaction between C-dots and BSA were estimated by Stern-Volmer equation and Double Log Regression Model (DLRM). According to the fluorescent intensity, quenching of model carrier protein by C-dots was due to dynamic quenching for non-covalent and static quenching for covalent binding. The binding site constant, KA and number of binding site, for covalent interaction is 1754.7L/mol and n≈1 (0.6922) were determined by DLRM on fluorescence quenching results. The blue shift of the fluorescence spectrum, from 450nm to 421nm (non-covalent) and 430nm (covalent) and suggested that both the microenvironment of C-dots and protein changed in relation to the protein concentration. The fluorescence intensity results show that protein structure has a significant role in Protein-C-dots interactions and type of binding influence physicochemical properties of C-dots differently. Understanding to this bio interface is important to utilize both quantum dots and biomolecules for biomedical field. It can be a useful guideline to design further applications in biomedical and bioimaging.


Subject(s)
Carbon/metabolism , Quantum Dots/metabolism , Serum Albumin, Bovine/metabolism , Animals , Binding Sites , Carbon/chemistry , Cattle , Immobilized Proteins/chemistry , Immobilized Proteins/metabolism , Molecular Docking Simulation , Protein Binding , Quantum Dots/chemistry , Quantum Dots/ultrastructure , Serum Albumin, Bovine/chemistry , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Starch/chemistry , Starch/metabolism , Thermodynamics
12.
Toxics ; 6(4)2018 Oct 09.
Article in English | MEDLINE | ID: mdl-30304811

ABSTRACT

Xanthone is an organic compound mostly found in mangosteen pericarp and widely known for its anti-proliferating effect on cancer cells. In this study, we evaluated the effects of xanthone crude extract (XCE) and α-mangostin (α-MG) on normoxic and hypoxic human hepatocellular carcinoma (HepG2) cells and their toxicity towards zebrafish embryos. XCE was isolated using a mixture of acetone and water (80:20) and verified via high performance liquid chromatography (HPLC). Both XCE and α-MG showed higher anti-proliferation effects on normoxic HepG2 cells compared to the control drug, 5-fluorouracil (IC50 = 50.23 ± 1.38, 8.39 ± 0.14, and 143.75 ± 15.31 µg/mL, respectively). In hypoxic conditions, HepG2 cells were two times less sensitive towards XCE compared to normoxic HepG2 cells (IC50 = 109.38 ± 1.80 µg/mL) and three times less sensitive when treated with >500 µg/mL 5-fluorouracil (5-FU). A similar trend was seen with the α-MG treatment on hypoxic HepG2 cells (IC50 = 10.11 ± 0.05 µg/mL) compared to normoxic HepG2 cells. However, at a concentration of 12.5 µg/mL, the α-MG treatment caused tail-bend deformities in surviving zebrafish embryos, while no malformation was observed when embryos were exposed to XCE and 5-FU treatments. Our study suggests that both XCE and α-MG are capable of inhibiting HepG2 cell proliferation during normoxic and hypoxic conditions, more effectively than 5-FU. However, XCE is the preferred option as no malformation was observed in surviving zebrafish embryos and it is more cost efficient than α-MG.

13.
Langmuir ; 34(36): 10603-10612, 2018 09 11.
Article in English | MEDLINE | ID: mdl-30109940

ABSTRACT

To overcome the increased disease rate, utilization of the versatile broad spectrum antibiotic drugs in controlled drug-delivery systems has been a challenging and complex consignment. However, with the development of microemulsion (µE)-based formulations, drugs can be effectively encapsulated and transferred to the target source. Herein, two biocompatible oil-in-water (o/w) µE formulations comprising clove oil/Tween 20/ethylene glycol/water (formulation A) and clove oil/Tween 20/1-butanol/water (formulation B) were developed for encapsulating the gatifloxacin (GTF), a fourth-generation antibiotic. The pseudoternary phase diagrams were mapped at a constant surfactant/co-surfactant (1:1) ratio to bound the existence of a monophasic isotropic region for as-formulated µEs. Multiple complementary characterization techniques, namely, conductivity (σ), viscosity (η), and optical microscopy analyses, were used to study the gradual changes that occurred in the microstructure of the as-formulated µEs, indicating the presence of a percolation transformation to a bicontinuous permeate flow. GTF showed good solubility, 3.2 wt % at pH 6.2 and 4.0 wt % at pH 6.8, in optimum µE of formulation A and formulation B, respectively. Each loaded µE formulation showed long-term stability over 8 months of storage. Moreover, no observable aggregation of GTF was found, as revealed by scanning transmission electron microscopy and peak-to-peak correlation of IR analysis, indicating the stability of GTF inside the formulation. The average particle size of each µE, measured by dynamic light scattering, increased upon loading GTF, intending the accretion of drug in the interfacial layers of microdomains. Likewise, fluorescence probing sense an interfacial hydrophobic environment to GTF molecules in any of the examined formulations, which may be of significant interest for understanding the kinetics of drug release.


Subject(s)
Anti-Bacterial Agents/chemistry , Drug Carriers/chemistry , Drug Compounding , Emulsions/chemistry , Gatifloxacin/chemistry , 1-Butanol/chemistry , Clove Oil/chemistry , Drug Liberation , Ethylene Glycol/chemistry , Particle Size , Phase Transition , Polysorbates/chemistry , Solubility , Viscosity , Water/chemistry
14.
J Biomater Sci Polym Ed ; 29(14): 1745-1763, 2018 10.
Article in English | MEDLINE | ID: mdl-29989528

ABSTRACT

This research aims to compare the ability of smart hydrogel in removing the methylene blue prepared by using two different radiation methods. The extracted pectin from the dragon fruit peel (Hylocereus polyrhizus) was used with acrylic acid (AA) to produce a polymerized hydrogel through gamma and microwave radiation. The optimum hydrogel swelling capacity was obtained by varying the dose of radiation, pectin to AA ratio and pH used. From the array of samples, the ideal hydrogel was obtained at pH 8 with a ratio of 2:3 (pectin: AA) using 10 kGy and 400 W radiated gamma and microwave respectively. The performance of both hydrogels namely as Pc/AA(G) (gamma) and Pc/AA(Mw) (microwave) were investigated using methylene blue (MB) adsorption studies. In this study, three variables were manipulated, pH and MB concentration and hydrogel mass in order to find the optimum condition for the adsorption. Results showed that 20 mg of Pc/AA(G) performed the highest MB removal which was about 45% of 20 mg/L MB at pH 8. While 30 mg of Pc/AA(Mw) able to remove up to 35% of 20 mg/L MB at the same pH condition. To describe the adsorption mechanism, both kinetic models pseudo-first-order, pseudo-second-order were employed. The results from kinetic data showed that it fitted the pseudo-first-order as compared to pseudo-second-order model equation. This study provides alternative of green, facile and affective biomaterial for dye absorbents that readily available.


Subject(s)
Fruit/chemistry , Hydrogels/chemistry , Methylene Blue/isolation & purification , Pectins/chemistry , Tracheophyta/chemistry , Water Pollutants, Chemical/isolation & purification , Acrylates/chemistry , Acrylic Resins/chemistry , Adsorption , Gamma Rays , Hydrogen-Ion Concentration , Kinetics , Microwaves , Polymerization
15.
Int J Biol Macromol ; 107(Pt B): 2412-2421, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29056465

ABSTRACT

Starch-based hydrogels are promising smart materials for biomedical and pharmaceutical applications, which offer exciting perspectives in biophysical research at molecular level. This work was intended to develop, characterize and explore the properties of hydrogel from starch extracted from new source, Dioscorea hispida Dennst. Starch-mediated hydrogels were successfully synthesized via free radical polymerization method with varying concentrations of acrylic acid (AA),N,N'-methylenebisacrylamide (MBA) and sodium hydroxide (NaOH) in aqueous system. The grafting reaction between starch and AA was examined by observing the decline in intensity peak of hydrogel FTIR spectrum at 3291cm-1 and peak around 1600-1680cm-1, indicating the stretching of hydroxyl group (OH) and stretching of carbon-carbon double bond (CC) respectively. The effects of cross-linker, monomer and NaOH concentration on swelling ratio and gel content in different medium and conditions were also evaluated. The thermal stability and structural morphology of as-synthesized hydrogels were studied by thermogravimetry analysis (TGA) and scanning electron microscopy (SEM). In-vitro cytotoxicity study using small intestine cell line (FHS-74 Int) revealed that the as-formulated eco-friendly-hydrogel was free from any harmful material and safe to use for future product development.


Subject(s)
Dioscorea/chemistry , Hydrogels/chemistry , Intestine, Small/drug effects , Starch/chemistry , Acrylates/chemistry , Cell Line , Cell Proliferation/drug effects , Drug Carriers/chemistry , Free Radicals/chemistry , Humans , Hydrogels/chemical synthesis , Hydrogels/pharmacology , Kinetics , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , Starch/chemical synthesis , Starch/pharmacology , Thermogravimetry , Water/chemistry
16.
Nanomaterials (Basel) ; 7(11)2017 Nov 20.
Article in English | MEDLINE | ID: mdl-29156613

ABSTRACT

pH-sensitive poly(acrylic acid) (PAA) hydrogel reinforced with cellulose nanocrystals (CNC) was prepared. Acrylic acid (AA) was subjected to chemical cross-linking using the cross-linking agent MBA (N,N-methylenebisacrylamide) with CNC entrapped in the PAA matrix. The quantity of CNC was varied between 0, 5, 10, 15, 20, and 25 wt %. X-ray diffraction (XRD) data showed an increase in crystallinity with the addition of CNC, while rheology tests demonstrated a significant increase in the storage modulus of the hydrogel with an increase in CNC content. It was found that the hydrogel reached maximum swelling at pH 7. The potential of the resulting hydrogels to act as drug carriers was then evaluated by means of the drug encapsulation efficiency test using theophylline as a model drug. It was observed that 15% CNC/PAA hydrogel showed the potential to be used as drug carrier system.

17.
Food Chem ; 221: 1621-1630, 2017 Apr 15.
Article in English | MEDLINE | ID: mdl-27979138

ABSTRACT

Vinegars are liquid products produced from the alcoholic and subsequent acetous fermentation of carbohydrate sources. They have been used as remedies in many cultures and have been reported to provide beneficial health effects when consumed regularly. Such benefits are due to various types of polyphenols, micronutrients and other bioactive compounds found in vinegars that contribute to their pharmacological effects, among them, antimicrobial, antidiabetic, antioxidative, antiobesity and antihypertensive effects. There are many types of vinegars worldwide, including black vinegar, rice vinegar, balsamic vinegar and white wine vinegar. All these vinegars are produced using different raw materials, yeast strains and fermentation procedures, thus giving them their own unique tastes and flavours. The main volatile compound in vinegar is acetic acid, which gives vinegar its strong, sour aroma and flavour. Other volatile compounds present in vinegars are mainly alcohols, acids, esters, aldehydes and ketones. The diversity of vinegars allows extensive applications in food.


Subject(s)
Acetic Acid/analysis , Alcohols/analysis , Aldehydes/analysis , Antioxidants/analysis , Esters/analysis , Fermentation , Food Handling , Hydrogen-Ion Concentration , Ketones/analysis , Micronutrients/analysis , Polyphenols/analysis , Volatile Organic Compounds/analysis , Wine/analysis
18.
J Biomed Mater Res B Appl Biomater ; 105(8): 2553-2564, 2017 Nov.
Article in English | MEDLINE | ID: mdl-27690276

ABSTRACT

The use of bacterial cellulose (BC)-based hydrogel has been gaining attention owing to its biocompatibility and biodegradability. This study was designed to investigate the effect of radiation doses and acrylic acid (AA) composition on in vitro and in vivo biocompatibility of BC/AA as wound dressing materials. Physical properties of the hydrogel, that is, thickness, adhesiveness, rate of water vapor transmission, and swelling were measured. Moreover, the effect of these parameters on skin irritation and sensitization, blood compatibility, and cytotoxicity was studied. Increased AA content and irradiation doses increased the thickness, crosslinking density, and improved the mechanical properties of the hydrogel, but reduced its adhesiveness. The swelling capacity of the hydrogel increased significantly with a decrease in the AA composition in simulated wound fluid. The water vapor permeability of polymeric hydrogels was in the range of 2035-2666 [g/(m-2 day-1 )]. Dermal irritation and sensitization test demonstrated that the hydrogel was nonirritant and nonallergic. The BC/AA hydrogel was found to be nontoxic to primary human dermal fibroblast skin cells with viability >88% and was found to be biocompatible with blood with a low hemolytic index (0.80-1.30%). Collectively, these results indicate that these hydrogels have the potential to be used as wound dressings. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2553-2564, 2017.


Subject(s)
Acrylates , Bacteria/chemistry , Bandages , Cellulose , Dermis , Hydrogels , Materials Testing , Acrylates/chemistry , Acrylates/pharmacology , Animals , Beta Particles , Cellulose/chemistry , Cellulose/pharmacology , Dermis/injuries , Dermis/metabolism , Dermis/pathology , Dose-Response Relationship, Radiation , Humans , Hydrogels/chemistry , Hydrogels/pharmacology , Rabbits , Rats
19.
Food Chem ; 220: 225-232, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-27855893

ABSTRACT

Starch from Dioscorea pyrifolia tubers was characterized for its proximate composition, physicochemical properties and toxicity. This starch contains 44.47±1.86% amylose, 4.84±0.29% moisture, 0.88±0.21% ash, 1.34±0.11% proteins and 92.73±0.48% carbohydrates. X-ray diffraction (XRD) analysis showed a type-C starch with a relative crystallinity of 23.31±2.41%. The starch granules are polyhedral, with a diameter of 2.8 to 5.6µm and average size of 3.93±1.47µm. Initial, peak and finishing gelatinization temperatures for the starch were 71.51±0.07, 75.05±0.15, and 78.25±0.18°C, respectively; the gelatinization enthalpy was 3.86±0.02J/g, and the peak height index was 1.09±0.05. Thermogravimetric analysis showed a weight loss of 85.81±0.52% and a decomposition temperature of 320.16±0.35°C, which indicated that there was good thermal stability of the starch. Fish embryo toxicity (FET) showed that the starch was not toxic and that it was suitable for food and non-food industries.


Subject(s)
Dioscorea/chemistry , Starch/chemistry , Amylose/analysis , Animals , Embryo, Nonmammalian/drug effects , Hydrogen-Ion Concentration , Plant Tubers/chemistry , Solubility , Starch/analysis , Starch/ultrastructure , Thermodynamics
20.
Carbohydr Polym ; 137: 488-496, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26686155

ABSTRACT

Being abundant in many tropical part of the world, Dioscorea sp. as food is limited due to its toxicity. However polysaccharides derive from these tubers could be important for other applications. Here we developed a Highly Luminescent Carbon Nanodots (C-dots) via acid hydrolysis of Gadong starch (GS). The hydrolysis rate of GS increased from 49% to 86% within 7 days while the X-ray diffraction showed the native GS particle is a C-crystalline type. The GS particles were either round or oval with diameters ranging from 50-90 nm. Further acid dehydration and surface oxidation reduced the size of GS nanoparticles to 6-25 nm. The C-dots produced a fluorescent emission at wavelength 441 nm. Toxicity tests demonstrate that zebrafish embryo were able to tolerate the C-dots for 48 h after exposure. This study has successfully demonstrated a novel approach of converting GS into excellent fluorescent C-dot.


Subject(s)
Dioscorea/chemistry , Luminescent Agents/chemical synthesis , Quantum Dots/chemistry , Starch/analogs & derivatives , Animals , Carbon/chemistry , Embryo, Nonmammalian/drug effects , Luminescent Agents/adverse effects , Luminescent Agents/chemistry , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...