Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(11)2022 Jun 04.
Article in English | MEDLINE | ID: mdl-35683779

ABSTRACT

The surface properties of zinc oxide powders prepared using mechanical activation, electron beam irradiation, and vacuum annealing, as well using combinations of these types of treatments, were studied using X-ray photoelectron spectroscopy. The structure of the obtained materials was studied by an X-ray diffraction technique and by scanning electron microscopy. We found that over five hours of grinding in an attritor, the size of nanocrystals decreases from 37 to 21 nm, and microdeformations increase from 0.3% to 0.6%. It was also found that a five-hour grinding treatment promoted formation of vacancies in the zinc sublattice at the surface and diffusion of Zn2+ cations into the bulk of the material. Irradiation of commercial zinc oxide powders with an electron beam with an energy of 0.9 MeV and a dose of 1 MGy induced breaking of Zn-O bonds, diffusion of interstitial zinc ions into the bulk, and oxygen atom escape from regular positions into the gas phase. A combined treatment of five hours of grinding and electron beam irradiation promoted accumulation of interstitial zinc ions at the surface of the material. Annealing of both initial and mechanically activated ZnO powders at temperatures up to 400 °C did not lead to a significant change in the properties of the samples. Upon exceeding the 400 °C annealing temperature the X-ray photoelectron spectra show almost identical atomic composition of the two types of materials, which is related to diffusion of interstitial zinc ions from the bulk of the material to the surface.

2.
J Chem Phys ; 151(21): 214309, 2019 Dec 07.
Article in English | MEDLINE | ID: mdl-31822089

ABSTRACT

The electronic properties of diphenylphthalide dicarboxylic acid (DPDA) are studied under gas-phase conditions using dissociative electron attachment spectroscopy and in the condensed environment by means of total current spectroscopy. The experimental features are assigned with the support of density functional theory calculations of the energies of the lowest-lying anion states to describe both resonances responsible for low-energy (0-15 eV) electron attachment to the isolated molecule and the maxima in the density of unoccupied electronic states in the condensed ultrathin (up to 10 nm) films. Resonance electron attachment to DPDA is found to be followed by the opening of the γ-lactone ring in the molecular negative ions, an unusual mechanism leading to their stabilization. A similar mechanism is expected to be responsible for the unique properties of phthalide-based materials in the condensed state.

3.
J Phys Chem B ; 121(16): 3965-3974, 2017 04 27.
Article in English | MEDLINE | ID: mdl-28394598

ABSTRACT

The electron attaching properties and fragmentation of temporary negative ions of melatonin and its biosynthetic precursor tryptophan are studied in vacuo using dissociative electron attachment (DEA) spectroscopy. The experimental findings are interpreted in silico with the support of Hartree-Fock and density functional theory calculations of empty orbital energies and symmetries, and evaluation of the electron affinities of the indolic molecules under investigation. The only fragment anions formed by DEA to melatonin at incident electron energies below 2 eV are associated with the elimination of a hydrogen atom (energetically favored from the NH site of the pyrrole ring, leaving the ring intact) or a CH3· radical from the temporary molecular negative ion. Opening of the pyrrole ring of melatonin is not detected over the whole electron energy range of 0-14 eV. The DEA spectra of l- and d-tryptophan are almost identical under the present experimental conditions. The adiabatic electron affinity of melatonin is predicted to be -0.49 eV at the B3LYP/6-31+G(d) level, indicating that the DEA mechanism in melatonin is likely to be present in most life forms given the availability of low energy electrons in living systems in both plant and animal kingdoms. In particular, H atom donation usually associated with free-radical scavenging activity can be stimulated by electron attachment and N-H bond cleavage at electron energies around 1 eV.


Subject(s)
Melatonin/chemistry , Tryptophan/chemistry , Electrons , Hydrogen/chemistry , Models, Molecular , Quantum Theory , Thermodynamics
4.
J Phys Chem B ; 120(47): 12098-12104, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27809526

ABSTRACT

This study is aimed to point out the important role played by resonance electron attachment in reductive dehalogenation, in particular in phytoremediation of organic pollutants under conditions of excess negative charge. To model enzymatic reactions occurring in reductive conditions, low-energy electron capture by the halogenated herbicides atrazine and bromoxynil was studied in vacuo using electron transmission spectroscopy. A variety of decay channels of the temporary molecular negative ions was discovered by means of dissociative electron attachment spectroscopy. The experimental results were interpreted with the support of quantum-chemical calculations. Dehalogenation of atrazine and bromoxynil was found to be the dominant decay of the molecular negative ions formed at thermal energies of the incident electrons. It is concluded that formation of negative ions by electron donation in enzymatic active centers followed by their dissociation along the σ bond can be considered as the main mechanism of reductive dehalogenation.


Subject(s)
Atrazine/chemistry , Electrons , Herbicides/chemistry , Nitriles/chemistry , Atrazine/metabolism , Biodegradation, Environmental , Halogenation , Herbicides/metabolism , Kinetics , Nitriles/metabolism , Oxidation-Reduction , Quantum Theory , Static Electricity , Thermodynamics
5.
J Phys Chem A ; 120(17): 2667-76, 2016 05 05.
Article in English | MEDLINE | ID: mdl-27074645

ABSTRACT

Electron-accepting properties, and in particular resonance dissociative electron attachment (DEA) to ascorbic acid (AA), are investigated by means of DEA spectroscopy in vacuo. The experimental features are assigned in silico and discussed in relation to expected dissociative electron transfer processes in vivo with the support of density functional theory calculations and the polarizable continuum model. It is shown that formation of the two most abundant AA metabolites in living cells, namely monodehydroascorbic acid and dehydroascorbic acid, can be stimulated by cellular electron transfer to AA under reductive conditions. Prooxidant effects caused by AA are suggested to be mediated by hydroxyl radicals formation via the DEA mechanism. The involvement of excited electronic states under UV-irradiation in plants could open additional DEA channels leading to specific AA activity forbidden under dark state conditions.


Subject(s)
Ascorbic Acid/chemistry , Ascorbic Acid/pharmacology , Electrons , Models, Biological , Animals , Ascorbic Acid/metabolism , Cells/drug effects , Electron Transport/drug effects , Molecular Structure , Oxidants/chemistry , Oxidants/metabolism , Quantum Theory
6.
Phys Chem Chem Phys ; 17(26): 16805-12, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26058603

ABSTRACT

The antioxidant isoflavone retusin efficiently attaches low-energy electrons in vacuo, generating fragment species via dissociative electron attachment (DEA), as has been shown by DEA spectroscopy. According to in silico results obtained by means of density functional theory, retusin is able to attach solvated electrons and could be decomposed under reductive conditions in vivo, for instance, near the mitochondrial electron transport chain, analogous to gas-phase DEA. The most intense decay channels of retusin temporary negative ions were found to be associated with the elimination of H atoms and H2 molecules. Doubly dehydrogenated fragment anions were predicted to possess a quinone structure. It is thought that molecular hydrogen, known for its selective antioxidant properties, can be efficiently generated via electron attachment to retusin in mitochondria and may be responsible for its antioxidant activity. The second abundant species, i.e., quinone bearing an excess negative charge, can serve as an electron carrier and can return the captured electron back to the respiration cycle. The number of OH substituents and their relative positions are crucial for the present molecular mechanism, which can explain the radical scavenging activity of polyphenolic compounds.


Subject(s)
Antioxidants/metabolism , Electrons , Flavonoids/metabolism , Maackia/metabolism , Antioxidants/chemistry , Antioxidants/isolation & purification , Flavonoids/chemistry , Flavonoids/isolation & purification , Maackia/chemistry , Quantum Theory
7.
J Phys Chem A ; 118(34): 6810-8, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25121340

ABSTRACT

Resonance interaction of low energy (0-14 eV) electrons with gas-phase 7,7,8,8-tetracyanoquinodimethane (TCNQ) was investigated using dissociative electron attachment (DEA) spectroscopy. Spectral features associated with formation of long-lived TCNQ molecular negative ions are detected at incident electron energies of 0.3, 1.3, and 3.0 eV. A variety of negative fragments is observed around 4 eV, and slow (microseconds) dissociative decay channels are detected at about 3 eV, in competition with simple re-emission of the captured electron. The average electron detachment time from the TCNQ(-) negative ions formed at 3 eV was evaluated to be 250 µs. The experimental findings are interpreted with the support of density functional theory (DFT) calculations of the empty orbital energies, scaled with an empirical equation, and by comparison with earlier electron transmission spectroscopy (ETS) data. A possible mechanism for the unusual formation of long-lived molecular anions above zero energy (up to 3 eV) is briefly discussed. The present results on the interactions between electrons and isolated TCNQ molecules could give more insight into processes observed in TCNQ adsorbates under conditions of excess negative charge. In particular, electron-stimulated surface reactions are hypothesized, likely occurring when condensed TCNQ molecules are exposed to electron beam irradiation.

SELECTION OF CITATIONS
SEARCH DETAIL
...