Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 119(15): 155701, 2017 Oct 13.
Article in English | MEDLINE | ID: mdl-29077463

ABSTRACT

Polarized neutron scattering has been used to obtain the magnetic moment at specific crystallographic sites of the austenitic and martensitic phases of two nonstoichiometric Ni-Mn-Ga single crystals with close composition. These alloys have been chosen because they exhibit different structures in the paramagnetic state and inverse positions of the respective martensitic transformation and Curie temperature. The diffraction analysis revealed a remarkable result: Despite the similar alloy composition, the magnetic moments of Mn are quite different for the two alloys at the same crystallographic position. Furthermore, such a difference enabled us to assess that the exchange coupling between Mn atoms switches from ferro- to antiferromagnetic at a distance between 2.92 and 3.32 Å in the martensite. These results are of great importance to guide first principles calculations that, up to now, have not been contrasted with experiments at the atomic level.

2.
J Phys Condens Matter ; 25(48): 484005, 2013 Dec 04.
Article in English | MEDLINE | ID: mdl-24201042

ABSTRACT

The martensitic transformation (MT) of metamagnetic shape memory alloys is very sensitive to the applied magnetic field and atomic order. We analyze the alloy Ni50Mn34.5In15.5 in magnetic fields up to 13 T. The alloy has been prepared both in an ordered state by slow cooling, and in a disordered state by rapid quenching. In both cases the dependence of the martensitic transition temperature on the field is highly nonlinear. Such departure from linearity is due to a decrease of the entropy change at the transition, ΔS, with the applied field. This can be explained by the ordering effect of the magnetic field on the frustrated magnetic structure of the alloy in the martensitic phase. Compliance with a recent model, relying on the strong magnetoelastic interactions in these compounds, is very satisfactory.

3.
J Phys Condens Matter ; 24(27): 276004, 2012 Jul 11.
Article in English | MEDLINE | ID: mdl-22713607

ABSTRACT

The magnetic, magnetocaloric and thermal characteristics have been studied in a Ni(50.3)Mn(20.8)Ga(27.6)V(1.3) ferromagnetic shape memory alloy (FSMA) transforming martensitically at around 40 K. The alloy shows first a transformation from austenite to an intermediate phase and then a partial transformation to an orthorhombic martensite, all the phases being ferromagnetically ordered. The thermomagnetization dependences enabled observation of the magnetocaloric effect in the vicinity of the martensitic transformation (MT). The Debye temperature and the density of states at the Fermi level are equal to θ(D) = (276 ± 4) K and 1.3 states/atom eV , respectively, and scarcely dependent on the magnetic field. The MT exhibited by Ni-Mn-Ga FSMAs at very low temperatures is distinctive in the sense that it is accompanied by a hardly detectable entropy change as a sign of a small driving force. The enhanced stability of the cubic phase and the low driving force of the MT stem from the reduced density of states near the Fermi level.


Subject(s)
Alloys/chemistry , Gallium/chemistry , Magnetics , Manganese/chemistry , Nickel/chemistry , Materials Testing , Temperature , Thermodynamics
4.
J Phys Condens Matter ; 21(1): 016002, 2009 Jan 07.
Article in English | MEDLINE | ID: mdl-21817239

ABSTRACT

The proper annealing of Ni(51)Mn(28)Ga(21) ribbon alloy gives rise to an increase of the saturation magnetization and of the magnetic order T(C) (up to 20 K) and martensitic transition T(M) (up to 10 K) temperatures. The combined x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) studies indicate that the annealing treatment drives the alloy to a more ordered structure without significantly affecting the local structure in terms of interatomic distances and bonding geometry. By contrast, the annealing strongly affects the near-edge absorption at the Mn K-edge while no effect is observed at either the Ni or Ga K-edge. These results suggest that annealing leads to a modification of the electronic structure of the Mn atoms while that of Ni and Ga atoms remains unvaried. However, strong XMCD signals are detected at both Ni and Ga K-edges whose amplitude increases after annealing. These results point out that despite the change of the magnetic properties of the system being mainly associated with the modification of the electronic properties of the Mn atoms, both Ni and Ga may play a non-negligible role through the polarization of the conduction band.

SELECTION OF CITATIONS
SEARCH DETAIL
...