Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38073611

ABSTRACT

INTRODUCTION: Hypoxia due to sinus obstruction is a major pathogenic mechanism leading to sinusitis. The objective of the current study is to define the electrophysiologic characteristics of hypoxia in vitro and in vivo. METHODS: Cystic fibrosis bronchoepithelial cells expressing wild-type cystic fibrosis transmembrane conductance regulator (CFTR) and human sinonasal epithelial cells were exposed to 1% or atmospheric O2 for 24 h. Time-dependent production of cytoplasmic free radicals was measured. Cells were subjected to Ussing chamber and patch clamp technique where CFTR currents were recorded in whole-cell and cell-attached mode for single channel studies. Indices of mucociliary transport (MCT) were measured using micro-optical coherence tomography. In a rabbit hypoxic maxillary sinus model, tissue oxygenation, relative mRNA expression of HIF-1α, pH, sinus potential difference (SPD), and MCT were determined. RESULTS: Ussing chamber (p < 0.05), whole-cell (p < 0.001), and single channel patch-clamp (p < 0.0001) showed significant inhibition of Cl- currents in hypoxic cells. Cytoplasmic free radicals showed time-dependent elevation peaking at 4 h (p < 0.0001). Airway surface liquid (p < 0.0001), periciliary liquid (p < 0.001), and MCT (p < 0.01) were diminished. Co-incubation with the free radical scavenger glutathione negated the impact of hypoxia on single channel currents and MCT markers. In sinusitis rabbits, mucosa exhibited low tissue oxygenation (p < 0.0001), increased HIF1α mRNA (p < 0.05), reduced pH (p < 0.01), and decreased MCT (p < 0.001). SPD measurements demonstrated markedly diminished transepithelial Cl- transport (p < 0.0001). CONCLUSION: Hypoxia induces severe CFTR dysfunction via free radical production causing reduced MCT in vitro and in vivo. Improved oxygenation is critical to reducing the impact of persistent mucociliary dysfunction.

2.
Matrix Biol ; 116: 67-84, 2023 02.
Article in English | MEDLINE | ID: mdl-36758905

ABSTRACT

Herein, we tested the hypothesis that low molecular weight hyaluronan (LMW-HA) inhibits lung epithelial ions transport in-vivo, ex-vivo, and in-vitro by activating the calcium-sensing receptor (CaSR). Twenty-four hours post intranasal instillation of 50-150 µg/ml LMW-HA to C57BL/6 mice, there was a 75% inhibition of alveolar fluid clearance (AFC), a threefold increase in the epithelial lining fluid (ELF) depth, and a 20% increase in lung wet/dry (W/D) ratio. Incubation of human and mouse precision cut lung slices with 150 µg/ml LMW-HA reduced the activity and the open probability (Po) of epithelial sodium channel (ENaC) in alveolar epithelial type 2 (ATII) cells, and in mouse tracheal epithelial cells (MTEC) monolayers as early as 4 h. The Cl- current through cystic fibrosis transmembrane conductance regulator (CFTR) and the activity of Na,K-ATPase were both inhibited by more than 66% at 24 h. The inhibitory effects of LMW-HA on ion channels were reversed by 1 µM NPS-2143, or 150 µg/ml high molecular weight hyaluronan (HMW-HA). In HEK-293 cells expressing the calcium-sensitive Cl- channel TMEM16-A, CaSR was required for the activation of the Cl- current by LMW-HA. This is the first demonstration of lung ions and water transport inhibition by LMW-HA, and its mediation through the activation of CaSR.


Subject(s)
Hyaluronic Acid , Receptors, Calcium-Sensing , Mice , Humans , Animals , Hyaluronic Acid/pharmacology , Sodium-Potassium-Exchanging ATPase/metabolism , Sodium-Potassium-Exchanging ATPase/pharmacology , HEK293 Cells , Molecular Weight , Mice, Inbred C57BL , Lung/metabolism
3.
Physiology (Bethesda) ; 36(5): 272-291, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34431415

ABSTRACT

The halogens chlorine (Cl2) and bromine (Br2) are highly reactive oxidizing elements with widespread industrial applications and a history of development and use as chemical weapons. When inhaled, depending on the dose and duration of exposure, they cause acute and chronic injury to both the lungs and systemic organs that may result in the development of chronic changes (such as fibrosis) and death from cardiopulmonary failure. A number of conditions, such as viral infections, coexposure to other toxic gases, and pregnancy increase susceptibility to halogens significantly. Herein we review their danger to public health, their mechanisms of action, and the development of pharmacological agents that when administered post-exposure decrease morbidity and mortality.


Subject(s)
Bromine , Halogens , Animals , Chlorine/toxicity , Humans , Lung
4.
Redox Biol ; 43: 101998, 2021 07.
Article in English | MEDLINE | ID: mdl-33971543

ABSTRACT

Lipopolysaccharide (LPS) serves as the interface between gram-negative bacteria (GNB) and the innate immune response in respiratory epithelial cells (REC). Herein, we describe a novel biological role of LPS that permits GNB to persist in the respiratory tract through inducing CFTR and mucociliary dysfunction. LPS reduced cystic fibrosis transmembrane conductance regulater (CFTR)-mediated short-circuit current in mammalian REC in Ussing chambers and nearly abrogated CFTR single channel activity (defined as forskolin-activated Cl- currents) in patch clamp studies, effects of which were blocked with toll-like receptor (TLR)-4 inhibitor. Unitary conductance and single-channel amplitude of CFTR were unaffected, but open probability and number of active channels were markedly decreased. LPS increased cytoplasmic and mitochondrial reactive oxygen species resulting in CFTR carbonylation. All effects of exposure were eliminated when reduced glutathione was added in the medium along with LPS. Functional microanatomy parameters, including mucociliary transport, in human sinonasal epithelial cells in vitro were also decreased, but restored with co-incubation with glutathione or TLR-4 inhibitor. In vivo measurements, following application of LPS in the nasal cavities showed significant decreases in transepithelial Cl- secretion as measured by nasal potential difference (NPD) - an effect that was nullified with glutathione and TLR-4 inhibitor. These data provide definitive evidence that LPS-generated reactive intermediates downregulate CFTR function in vitro and in vivo which results in cystic fibrosis-type disease. Findings have implications for therapeutic approaches intent on stimulating Cl- secretion and/or reducing oxidative stress to decrease the sequelae of GNB airway colonization and infection.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Mucociliary Clearance , Animals , Epithelial Cells/metabolism , Humans , Ion Transport , Lipopolysaccharides , Probability , Reactive Oxygen Species
5.
J Ginseng Res ; 45(1): 66-74, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33437158

ABSTRACT

BACKGROUND: Abnormal chloride (Cl-) transport has a detrimental impact on mucociliary clearance in both cystic fibrosis (CF) and non-CF chronic rhinosinusitis. Ginseng is a medicinal plant noted to have anti-inflammatory and antimicrobial properties. The present study aims to assess the capability of red ginseng aqueous extract (RGAE) to promote transepithelial Cl- secretion in nasal epithelium. METHODS: Primary murine nasal septal epithelial (MNSE) [wild-type (WT) and transgenic CFTR-/-], fisher-rat-thyroid (FRT) cells expressing human WT CFTR, and TMEM16A-expressing human embryonic kidney cultures were utilized for the present experiments. Ciliary beat frequency (CBF) and airway surface liquid (ASL) depth measurements were performed using micro-optical coherence tomography (µOCT). Mechanisms underlying transepithelial Cl- transport were determined using pharmacologic manipulation in Ussing chambers and whole-cell patch clamp analysis. RESULTS: RGAE (at 30µg/mL of ginsenosides) significantly increased Cl- transport [measured as change in short-circuit current (ΔISC = µA/cm2)] when compared with control in WT and CFTR-/- MNSE (WT vs control = 49.8±2.6 vs 0.1+/-0.2, CFTR-/- = 33.5±1.5 vs 0.2±0.3, p < 0.0001). In FRT cells, the CFTR-mediated ΔISC attributed to RGAE was small (6.8 ± 2.5 vs control, 0.03 ± 0.01, p < 0.05). In patch clamp, TMEM16A-mediated currents were markedly improved with co-administration of RGAE and uridine 5-triphosphate (8406.3 +/- 807.7 pA) over uridine 5-triphosphate (3524.1 +/- 292.4 pA) or RGAE alone (465.2 +/- 90.7 pA) (p < 0.0001). ASL and CBF were significantly greater with RGAE (6.2+/-0.3 µm vs control, 3.9+/-0.09 µm; 10.4+/-0.3 Hz vs control, 7.3 ± 0.2 Hz; p < 0.0001) in MNSE. CONCLUSION: RGAE augments ASL depth and CBF by stimulating Cl- secretion through CaCC, which suggests therapeutic potential in both CF and non-CF chronic rhinosinusitis.

6.
Ann N Y Acad Sci ; 1479(1): 29-43, 2020 11.
Article in English | MEDLINE | ID: mdl-32578230

ABSTRACT

Chlorine (Cl2 ) and bromine (Br2 ) are produced in large quantities throughout the world and used in the industry and the sanitation of water. These halogens can pose a significant threat to public health when released into the atmosphere during transportation and industrial accidents, or as acts of terrorism. In this review, we discuss the evidence showing that the activity of Cl2 and Br2 , and of products formed by their interaction with biomolecules, fragment high-molecular-weight hyaluronan (HMW-HA), a key component of the interstitial space and present in epithelial cells, to form proinflammatory, low-molecular-weight hyaluronan fragments that increase intracellular calcium (Ca2+ ) and activate RAS homolog family member A (RhoA) in airway smooth muscle and epithelial and microvascular cells. These changes result in airway hyperresponsiveness (AHR) to methacholine and increase epithelial and microvascular permeability. The increase in intracellular Ca2+ is the result of the activation of the calcium-sensing receptor by Cl2 , Br2 , and their by-products. Posthalogen administration of a commercially available form of HMW-HA to mice and to airway cells in vitro reverses the increase of Ca2+ and the activation of RhoA, and restores AHR to near-normal levels of airway function. These data have established the potential of HMW-HA to be a countermeasure against Cl2 and Br2 toxicity.


Subject(s)
Bromine/toxicity , Calcium Signaling/drug effects , Chlorine/toxicity , Hyaluronic Acid/metabolism , Respiratory Hypersensitivity , Calcium/metabolism , Humans , Respiratory Hypersensitivity/chemically induced , Respiratory Hypersensitivity/metabolism , Respiratory Hypersensitivity/pathology , rhoA GTP-Binding Protein/metabolism
7.
Redox Biol ; 36: 101592, 2020 09.
Article in English | MEDLINE | ID: mdl-32506040

ABSTRACT

We previously reported that the highly reactive cell-free heme (CFH) is increased in the plasma of patients with chronic lung injury and causes pulmonary edema in animal model of acute respiratory distress syndrome (ARDS) post inhalation of halogen gas. However, the mechanisms by which CFH causes pulmonary edema are unclear. Herein we report for the first time that CFH and chlorinated lipids (formed by the interaction of halogen gas, Cl2, with plasmalogens) are increased in the plasma of patients exposed to Cl2 gas. Ex vivo incubation of red blood cells (RBC) with halogenated lipids caused oxidative damage to RBC cytoskeletal protein spectrin, resulting in hemolysis and release of CFH. Patch clamp and short circuit current measurements revealed that CFH inhibited the activity of amiloride-sensitive epithelial Na+ channel (ENaC) and cation sodium (Na+) channels in mouse alveolar cells and trans-epithelial Na+ transport across human airway cells with EC50 of 125 nM and 500 nM, respectively. Molecular modeling identified 22 putative heme-docking sites on ENaC (energy of binding range: 86-1563 kJ/mol) with at least 2 sites within its narrow transmembrane pore, potentially capable of blocking Na+ transport across the channel. A single intramuscular injection of the heme-scavenging protein, hemopexin (4 µg/kg body weight), one hour post halogen gas exposure, decreased plasma CFH and improved lung ENaC activity in mice. In conclusion, results suggested that CFH mediated inhibition of ENaC activity may be responsible for pulmonary edema post inhalation injury.


Subject(s)
Epithelial Sodium Channels , Respiratory Distress Syndrome , Animals , Epithelial Sodium Channels/genetics , Heme , Humans , Lung , Mice , Pulmonary Alveoli , Respiratory Distress Syndrome/chemically induced
8.
Am J Physiol Lung Cell Mol Physiol ; 318(3): L459-L471, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31913654

ABSTRACT

We investigated the mechanisms involved in the development of airway hyperresponsiveness (AHR) following exposure of mice to halogens. Male mice (C57BL/6; 20-25 g) exposed to either bromine (Br2) or Cl2 (600 or 400 ppm, respectively, for 30 min) developed AHR 24 h after exposure. Nifedipine (5 mg/kg body wt; an L-type calcium channel blocker), administered subcutaneously after Br2 or Cl2 exposure, produced higher AHR compared with Br2 or Cl2 alone. In contrast, diltiazem (5 mg/kg body wt; a nondihydropyridine L-type calcium channel blocker) decreased AHR to control (air) values. Exposure of immortalized human airway smooth muscle cells (hASMC) to Br2 resulted in membrane potential depolarization (Vm Air: 62 ± 3 mV; 3 h post Br2:-45 ± 5 mV; means ± 1 SE; P < 0.001), increased intracellular [Ca2+]i, and increased expression of the calcium-sensing receptor (Ca-SR) protein. Treatment of hASMC with a siRNA against Ca-SR significantly inhibited the Br2 and nifedipine-induced Vm depolarization and [Ca2+]i increase. Intranasal administration of an antagonist to Ca-SR in mice postexposure to Br2 reversed the effects of Br2 and nifedipine on AHR. Incubation of hASMC with low-molecular-weight hyaluronan (LMW-HA), generated by exposing high-molecular-weight hyaluronan (HMW-HA) to Br2, caused Vm depolarization, [Ca2+]i increase, and Ca-SR expression to a similar extent as exposure to Br2 and Cl2. The addition of HMW-HA to cells or mice exposed to Br2, Cl2, or LMW-HA reversed these effects in vitro and improved AHR in vivo. We conclude that detrimental effects of halogen exposure on AHR are mediated via activation of the Ca-SR by LMW-HA.


Subject(s)
Calcium Channel Blockers/pharmacology , Calcium/metabolism , Hyaluronic Acid/pharmacology , Muscle, Smooth/drug effects , Receptors, Calcium-Sensing/metabolism , Respiratory Hypersensitivity/drug therapy , Viscosupplements/pharmacology , Animals , Bromine/toxicity , Cells, Cultured , Chlorides/toxicity , Humans , Male , Mice , Mice, Inbred C57BL , Molecular Weight , Muscle, Smooth/metabolism , Receptors, Calcium-Sensing/antagonists & inhibitors , Receptors, Calcium-Sensing/genetics , Respiratory Hypersensitivity/chemically induced , Respiratory Hypersensitivity/metabolism , Respiratory Hypersensitivity/pathology
9.
Int Forum Allergy Rhinol ; 9(1): 100-105, 2019 01.
Article in English | MEDLINE | ID: mdl-30152192

ABSTRACT

BACKGROUND: Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene result in defective Cl- transport and cause chronic bacterial infections in the upper and lower airways of cystic fibrosis (CF) patients. Ivacaftor is a CFTR potentiator that improves Cl- transport in CF patients with at least 1 copy of the G551D mutation. Resveratrol is also a potent CFTR potentiator that increases determinants of mucociliary transport. The objective of this study is to determine whether resveratrol and ivacaftor improve Cl- secretion in G551D CFTR over either agent alone. METHODS: Fisher rat thyroid cells (FRT) transfected with G551D CFTR and human sinonasal epithelial cells (HSNE) containing the CFTR G551D mutation were subjected to pharmacologic manipulation of transepithelial ion transport in Ussing chambers. Activity was further evaluated using whole-cell patch clamp methods in G551D FRT cells. RESULTS: In G551D FRT cells, resveratrol (100 µM) and ivacaftor (10 µM) significantly increased Cl- transport (change in short-circuit current, δISC = µA/cm2 ) compared with single-agent and dimethylsulfoxide vehicle controls (resveratrol + ivacaftor 4.97 ± 0.57 vs ivacaftor 0.74 ± 0.12 vs resveratrol 2.96 ± 0.52 vs control 0.74 ± 0.12; p < 0.001). Maximal Cl- secretion (20 µM forskolin) was also significantly enhanced (p < 0.0001). Activity was confirmed in G551D HSNE (resveratrol + ivacaftor 4.48 ± 0.39 vs ivacaftor 1.05 ± 0.11 vs. resveratrol 0.84 ± 0.3 vs control, 0.0 ± 0.02; p < 0.001), and whole-cell patch clamp analysis in G551D FRT cells (resveratrol + ivacaftor -2535 ± 179.3 pA vs ivacaftor -1408.9 ± 101.3 pA vs resveratrol; -766.2 ± 71.2 pA; p < 0.0001). CONCLUSION: Additive improvement in G551D CFTR-mediated Cl- secretion suggests that resveratrol could enhance ivacaftor therapy in these patients and improve CF-related rhinosinusitis.


Subject(s)
Aminophenols/pharmacology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/drug therapy , Mutation/genetics , Nasal Mucosa/physiology , Paranasal Sinus Diseases/drug therapy , Quinolones/pharmacology , Resveratrol/pharmacology , Thyroid Gland/physiology , Animals , Cells, Cultured , Chlorides/metabolism , Cystic Fibrosis/genetics , Drug Synergism , Drug Therapy, Combination , Humans , Ion Transport/drug effects , Mucociliary Clearance/drug effects , Nasal Mucosa/pathology , Paranasal Sinus Diseases/genetics , Rats , Thyroid Gland/drug effects , Thyroid Gland/pathology
10.
JCI Insight ; 3(20)2018 10 18.
Article in English | MEDLINE | ID: mdl-30333319

ABSTRACT

Severe influenza (IAV) infection can develop into bronchopneumonia and edema, leading to acquired respiratory distress syndrome (ARDS) and pathophysiology. Underlying causes for pulmonary edema and aberrant fluid regulation largely remain unknown, particularly regarding the role of viral-mediated mechanisms. Herein, we show that distinct IAV strains reduced the functions of the epithelial sodium channel (ENaC) and the cystic fibrosis transmembrane regulator (CFTR) in murine respiratory and alveolar epithelia in vivo, as assessed by measurements of nasal potential differences and single-cell electrophysiology. Reduced ion channel activity was distinctly limited to virally infected cells in vivo and not bystander uninfected lung epithelium. Multiple lines of evidence indicated ENaC and CFTR dysfunction during the acute infection period; however, only CFTR dysfunction persisted beyond the infection period. ENaC, CFTR, and Na,K-ATPase activities and protein levels were also reduced in virally infected human airway epithelial cells. Reduced ENaC and CFTR led to changes in airway surface liquid morphology of human tracheobronchial cultures and airways of IAV-infected mice. Pharmacologic correction of CFTR function ameliorated IAV-induced physiologic changes. These changes are consistent with mucous stasis and pulmonary edema; furthermore, they indicate that repurposing therapeutic interventions correcting CFTR dysfunction may be efficacious for treatment of IAV lung pathophysiology.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Sodium Channels/metabolism , Influenza A virus/pathogenicity , Influenza, Human/pathology , Respiratory Mucosa/pathology , Aminopyridines/pharmacology , Animals , Benzodioxoles/pharmacology , Bronchi/metabolism , Bronchi/pathology , Bronchi/virology , Cells, Cultured , Disease Models, Animal , Dogs , Epithelial Cells , Female , Humans , Influenza, Human/complications , Influenza, Human/virology , Madin Darby Canine Kidney Cells , Male , Mice , Primary Cell Culture , Pulmonary Edema/pathology , Pulmonary Edema/virology , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , Respiratory Mucosa/metabolism , Respiratory Mucosa/virology , Sodium-Potassium-Exchanging ATPase/metabolism , Water-Electrolyte Balance/drug effects
11.
Am J Physiol Lung Cell Mol Physiol ; 313(5): L845-L858, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28775098

ABSTRACT

The cystic fibrosis transmembrane conductance regulator (CFTR) and the amiloride-sensitive epithelial sodium channels (ENaC) are located in the apical membranes of airway and alveolar epithelial cells. These transporters play an important role in the regulation of lung fluid balance across airway and alveolar epithelia by being the conduits for chloride (Cl-) and bicarbonate ([Formula: see text]) secretion and sodium (Na+) ion absorption, respectively. The functional role of these channels in the respiratory tract is to maintain the optimum volume and ionic composition of the bronchial periciliary fluid (PCL) and alveolar lining fluid (ALF) layers. The PCL is required for proper mucociliary clearance of pathogens and debris, and the ALF is necessary for surfactant homeostasis and optimum gas exchange. Dysregulation of ion transport may lead to mucus accumulation, bacterial infections, inflammation, pulmonary edema, and compromised respiratory function. Influenza (or flu) in mammals is caused by influenza A and B viruses. Symptoms include dry cough, sore throat, and is often followed by secondary bacterial infections, accumulation of fluid in the alveolar spaces and acute lung injury. The underlying mechanisms of flu symptoms are not fully understood. This review summarizes our present knowledge of how influenza virus infections alter airway and alveolar epithelial cell CFTR and ENaC function in vivo and in vitro and the role of these changes in influenza pathogenesis.


Subject(s)
Alveolar Epithelial Cells/virology , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Ion Channels/metabolism , Orthomyxoviridae/pathogenicity , Virus Diseases/metabolism , Animals , Humans , Respiratory Mucosa/metabolism , Respiratory Mucosa/virology
12.
Am J Physiol Lung Cell Mol Physiol ; 313(2): L328-L338, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28473325

ABSTRACT

Primary cilia (PC) are solitary cellular organelles that play critical roles in development, homeostasis, and disease pathogenesis by modulating key signaling pathways such as Sonic Hedgehog and calcium flux. The antenna-like shape of PC enables them also to facilitate sensing of extracellular and mechanical stimuli into the cell, and a critical role for PC has been described for mesenchymal cells such as chondrocytes. However, nothing is known about the role of PC in airway smooth muscle cells (ASMCs) in the context of airway remodeling. We hypothesized that PC on ASMCs mediate cell contraction and are thus integral in the remodeling process. We found that PC are expressed on ASMCs in asthmatic lungs. Using pharmacological and genetic methods, we demonstrated that PC are necessary for ASMC contraction in a collagen gel three-dimensional model both in the absence of external stimulus and in response to the extracellular component hyaluronan. Mechanistically, we demonstrate that the effect of PC on ASMC contraction is, to a small extent, due to their effect on Sonic Hedgehog signaling and, to a larger extent, due to their effect on calcium influx and membrane depolarization. In conclusion, PC are necessary for the development of airway remodeling by mediating calcium flux and Sonic Hedgehog signaling.


Subject(s)
Airway Remodeling/physiology , Bronchi/pathology , Cilia/pathology , Asthma/metabolism , Asthma/pathology , Bronchi/metabolism , Cell Membrane/metabolism , Cell Membrane/pathology , Cells, Cultured , Cilia/metabolism , HEK293 Cells , Hedgehog Proteins/metabolism , Humans , Membrane Potentials/physiology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Signal Transduction/physiology
13.
PLoS One ; 11(5): e0155882, 2016.
Article in English | MEDLINE | ID: mdl-27214033

ABSTRACT

The most common mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene leads to deletion of the phenylalanine at position 508 (ΔF508) in the CFTR protein and causes multiple folding and functional defects. Contrary to large-scale efforts by industry and academia, no significant therapeutic benefit has been achieved with a single "corrector". Therefore, investigations concentrate on drug combinations. Orkambi (Vertex Pharmaceuticals), the first FDA-approved drug for treatment of cystic fibrosis (CF) caused by this mutation, is a combination of a corrector (VX-809) that facilitates ΔF508 CFTR biogenesis and a potentiator (VX-770), which improves its function. Yet, clinical trials utilizing this combination showed only modest therapeutic benefit. The low efficacy Orkambi has been attributed to VX-770-mediated destabilization of VX-809-rescued ΔF508 CFTR. Here we report that the negative effects of VX-770 can be reversed by increasing the half-life of the endoplasmic reticulum (ER) form (band B) of ΔF508 CFTR with another corrector (Corr-4a.) Although Corr-4a alone has only minimal effects on ΔF508 CFTR rescue, it increases the half-life of ΔF508 CFTR band B when it is present during half-life measurements. Our data shows that stabilization of band B ΔF508 CFTR with Corr-4a and simultaneous rescue with VX-809, leads to a >2-fold increase in cAMP-activated, CFTRinh-172-inhibited currents compared to VX-809 alone, or VX-809+VX-770. The negative effects of VX-770 and the Corr-4a protection are specific to the native I507-ATT ΔF508 CFTR without affecting the inherently more stable, synonymous variant I507-ATC ΔF508 CFTR. Our studies emphasize that stabilization of ΔF508 CFTR band B in the ER might improve its functional rescue by Orkambi.


Subject(s)
Aminophenols/pharmacology , Aminopyridines/pharmacology , Benzamides/pharmacology , Benzodioxoles/pharmacology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Quinolones/pharmacology , Thiazoles/pharmacology , Cell Line , Cystic Fibrosis/drug therapy , Cystic Fibrosis Transmembrane Conductance Regulator/drug effects , Endoplasmic Reticulum/metabolism , Gene Expression Regulation/drug effects , HEK293 Cells , Half-Life , Humans , Mutation
14.
FASEB J ; 30(1): 201-13, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26336913

ABSTRACT

Synonymous mutations, such as I507-ATC→ATT, in deletion of Phe508 in cystic fibrosis transmembrane conductance regulator (ΔF508 CFTR), the most frequent disease-associated mutant of CFTR, may affect protein biogenesis, structure, and function and contribute to an altered disease phenotype. Small-molecule drugs are being developed to correct ΔF508 CFTR. To understand correction mechanisms and the consequences of synonymous mutations, we analyzed the effect of mechanistically distinct correctors, corrector 4a (C4) and lumacaftor (VX-809), on I507-ATT and I507-ATC ΔF508 CFTR biogenesis and function. C4 stabilized I507-ATT ΔF508 CFTR band B, but without considerable biochemical and functional correction. VX-809 biochemically corrected ∼10% of both of the variants, leading to stable, forskolin+3-isobutyl-1-methylxanthine (IBMX)-activated whole-cell currents in the presence of the corrector. Omitting VX-809 during whole-cell recordings led to a spontaneous decline of the currents, suggesting posttranslational stabilization by VX-809. Treatment of cells with the C4+VX-809 combination resulted in enhanced rescue and 2-fold higher forskolin+IBMX-activated currents of both I507-ATT and I507-ATC ΔF508 CFTR, compared with VX-809 treatment alone. The lack of an effect of C4 on I507-ATC ΔF508 CFTR, but its additive effect in combination with VX-809, implies that C4 acted on VX-809-modified I507-ATC ΔF508 CFTR. Our results suggest that binding of C4 and VX-809 to ΔF508 CFTR is conformation specific and provide evidence that synonymous mutations can alter the drug sensitivity of proteins.


Subject(s)
Aminopyridines/pharmacology , Benzodioxoles/pharmacology , Codon/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Action Potentials , Cystic Fibrosis Transmembrane Conductance Regulator/drug effects , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , HEK293 Cells , Humans , Point Mutation , Protein Binding , Protein Stability , Ubiquitination
15.
Physiol Rep ; 3(6)2015 Jun.
Article in English | MEDLINE | ID: mdl-26109193

ABSTRACT

Victims of chlorine (Cl2) inhalation that die demonstrate significant cardiac pathology. However, a gap exists in the understanding of Cl2-induced cardiac dysfunction. This study was performed to characterize cardiac dysfunction occurring after Cl2 exposure in rats at concentrations mimicking accidental human exposures (in the range of 500 or 600 ppm for 30 min). Inhalation of 500 ppm Cl2 for 30 min resulted in increased lactate in the coronary sinus of the rats suggesting an increase in anaerobic metabolism by the heart. There was also an attenuation of myocardial contractile force in an ex vivo (Langendorff technique) retrograde perfused heart preparation. After 20 h of return to room air, Cl2 exposure at 500 ppm was associated with a reduction in systolic and diastolic blood pressure as well echocardiographic/Doppler evidence of significant left ventricular systolic and diastolic dysfunction. Cl2 exposure at 600 ppm (30 min) was associated with biventricular failure (observed at 2 h after exposure) and death. Cardiac mechanical dysfunction persisted despite increasing the inspired oxygen fraction concentration in Cl2-exposed rats (500 ppm) to ameliorate hypoxia that occurs after Cl2 inhalation. Similarly ex vivo cardiac mechanical dysfunction was reproduced by sole exposure to chloramine (a potential circulating Cl2 reactant product). These results suggest an independent and distinctive role of Cl2 (and its reactants) in inducing cardiac toxicity and potentially contributing to mortality.

16.
FASEB J ; 29(7): 2712-25, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25795456

ABSTRACT

We sought to determine the mechanisms by which influenza infection of human epithelial cells decreases cystic fibrosis transmembrane conductance regulator (CFTR) expression and function. We infected human bronchial epithelial (NHBE) cells and murine nasal epithelial (MNE) cells with various strains of influenza A virus. Influenza infection significantly reduced CFTR short circuit currents (Isc) and protein levels at 8 hours postinfection. We then infected CFTR expressing human embryonic kidney (HEK)-293 cells (HEK-293 CFTRwt) with influenza virus encoding a green fluorescent protein (GFP) tag and performed whole-cell and cell-attached patch clamp recordings. Forskolin-stimulated, GlyH-101-sensitive CFTR conductances, and CFTR open probabilities were reduced by 80% in GFP-positive cells; Western blots also showed significant reduction in total and plasma membrane CFTR levels. Knockdown of the influenza matrix protein 2 (M2) with siRNA, or inhibition of its activity by amantadine, prevented the decrease in CFTR expression and function. Lysosome inhibition (bafilomycin-A1), but not proteasome inhibition (lactacystin), prevented the reduction in CFTR levels. Western blots of immunoprecipitated CFTR from influenza-infected cells, treated with BafA1, and probed with antibodies against lysine 63-linked (K-63) or lysine 48-linked (K-48) polyubiquitin chains supported lysosomal targeting. These results highlight CFTR damage, leading to early degradation as an important contributing factor to influenza infection-associated ion transport defects.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/physiology , Influenza A virus/physiology , Influenza A virus/pathogenicity , Viral Matrix Proteins/physiology , Animals , Apoptosis , Cells, Cultured , Cystic Fibrosis Transmembrane Conductance Regulator/antagonists & inhibitors , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelial Cells/virology , Gene Expression , Gene Knockdown Techniques , HEK293 Cells , Humans , Influenza A virus/genetics , Influenza, Human/metabolism , Influenza, Human/pathology , Influenza, Human/virology , Ion Transport , Lysosomes/metabolism , Mice , Necrosis , Patch-Clamp Techniques , Proteolysis , Transfection , Viral Matrix Proteins/antagonists & inhibitors , Viral Matrix Proteins/genetics
17.
Am J Physiol Lung Cell Mol Physiol ; 308(9): L891-903, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25747964

ABSTRACT

Chlorine (Cl2) inhalation induces severe oxidative lung injury and airway hyperresponsiveness (AHR) that lead to asthmalike symptoms. When inhaled, Cl2 reacts with epithelial lining fluid, forming by-products that damage hyaluronan, a constituent of the extracellular matrix, causing the release of low-molecular-weight fragments (L-HA, <300 kDa), which initiate a series of proinflammatory events. Cl2 (400 ppm, 30 min) exposure to mice caused an increase of L-HA and its binding partner, inter-α-trypsin-inhibitor (IαI), in the bronchoalveolar lavage fluid. Airway resistance following methacholine challenge was increased 24 h post-Cl2 exposure. Intratracheal administration of high-molecular-weight hyaluronan (H-HA) or an antibody against IαI post-Cl2 exposure decreased AHR. Exposure of human airway smooth muscle (HASM) cells to Cl2 (100 ppm, 10 min) or incubation with Cl2-exposed H-HA (which fragments it to L-HA) increased membrane potential depolarization, intracellular Ca(2+), and RhoA activation. Inhibition of RhoA, chelation of intracellular Ca(2+), blockade of cation channels, as well as postexposure addition of H-HA, reversed membrane depolarization in HASM cells. We propose a paradigm in which oxidative lung injury generates reactive species and L-HA that activates RhoA and Ca(2+) channels of airway smooth muscle cells, increasing their contractility and thus causing AHR.


Subject(s)
Asthma/drug therapy , Bronchial Hyperreactivity/drug therapy , Hyaluronic Acid/therapeutic use , Lung Injury/drug therapy , Oxidative Stress/drug effects , Alpha-Globulins/antagonists & inhibitors , Alpha-Globulins/biosynthesis , Alpha-Globulins/immunology , Animals , Bronchial Hyperreactivity/immunology , Bronchial Provocation Tests , Bronchoalveolar Lavage Fluid/cytology , Calcium/metabolism , Calcium Channel Blockers , Calcium Channels/metabolism , Cells, Cultured , Chlorine/toxicity , Enzyme Activation , Extracellular Matrix , Inflammation , Membrane Potentials/drug effects , Methacholine Chloride/toxicity , Mice , Mice, Inbred C57BL , Muscle Contraction/drug effects , Myocytes, Smooth Muscle , Patch-Clamp Techniques , Reactive Oxygen Species/metabolism , Trachea/metabolism , rho GTP-Binding Proteins/metabolism , rhoA GTP-Binding Protein
18.
PLoS One ; 9(8): e104090, 2014.
Article in English | MEDLINE | ID: mdl-25117505

ABSTRACT

INTRODUCTION: We have previously demonstrated that Sinupret, an established treatment prescribed widely in Europe for respiratory ailments including rhinosinusitis, promotes transepithelial chloride (Cl-) secretion in vitro and in vivo. The present study was designed to evaluate other indicators of mucociliary clearance (MCC) including ciliary beat frequency (CBF) and airway surface liquid (ASL) depth, but also investigate the mechanisms that underlie activity of this bioflavonoid. METHODS: Primary murine nasal septal epithelial (MNSE) [wild type (WT) and transgenic CFTR(-/-)], human sinonasal epithelial (HSNE), WT CFTR-expressing CFBE and TMEM16A-expressing HEK cultures were utilized for the present experiments. CBF and ASL depth measurements were performed. Mechanisms underlying transepithelial Cl- transport were determined using pharmacologic manipulation in Ussing chambers, Fura-2 intracellular calcium [Ca(2+)]i imaging, cAMP signaling, regulatory domain (R-D) phosphorylation of CFTR, and excised inside out and whole cell patch clamp analysis. RESULTS: Sinupret-mediated Cl- secretion [ΔISC(µA/cm(2))] was pronounced in WT MNSE (20.7+/-0.9 vs. 5.6+/-0.9(control), p<0.05), CFTR(-/-) MNSE (10.1+/-1.0 vs. 0.9+/-0.3(control), p<0.05) and HSNE (20.7+/-0.3 vs. 6.4+/-0.9(control), p<0.05). The formulation activated Ca(2+) signaling and TMEM16A channels, but also increased CFTR channel open probability (Po) without stimulating PKA-dependent pathways responsible for phosphorylation of the CFTR R-domain and resultant Cl- secretion. Sinupret also enhanced CBF and ASL depth. CONCLUSION: Sinupret stimulates CBF, promotes transepithelial Cl- secretion, and increases ASL depth in a manner likely to enhance MCC. Our findings suggest that direct stimulation of CFTR, together with activation of Ca(2+)-dependent TMEM16A secretion account for the majority of anion transport attributable to Sinupret. These studies provide further rationale for using robust Cl- secretagogue based therapies as an emerging treatment modality for common respiratory diseases of MCC including acute and chronic bronchitis and CRS.


Subject(s)
Chloride Channels/metabolism , Chlorides/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Ion Transport/drug effects , Mucociliary Clearance/drug effects , Neoplasm Proteins/metabolism , Plant Extracts/pharmacology , Animals , Anoctamin-1 , Calcium/metabolism , Cilia/drug effects , Cilia/physiology , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Epithelial Cells/metabolism , Humans , Mice , Patch-Clamp Techniques , Protein Interaction Domains and Motifs , Signal Transduction/drug effects
19.
Am J Respir Crit Care Med ; 190(5): 522-32, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25029038

ABSTRACT

RATIONALE: Alveolar liquid clearance is regulated by Na(+) uptake through the apically expressed epithelial sodium channel (ENaC) and basolaterally localized Na(+)-K(+)-ATPase in type II alveolar epithelial cells. Dysfunction of these Na(+) transporters during pulmonary inflammation can contribute to pulmonary edema. OBJECTIVES: In this study, we sought to determine the precise mechanism by which the TIP peptide, mimicking the lectin-like domain of tumor necrosis factor (TNF), stimulates Na(+) uptake in a homologous cell system in the presence or absence of the bacterial toxin pneumolysin (PLY). METHODS: We used a combined biochemical, electrophysiological, and molecular biological in vitro approach and assessed the physiological relevance of the lectin-like domain of TNF in alveolar liquid clearance in vivo by generating triple-mutant TNF knock-in mice that express a mutant TNF with deficient Na(+) uptake stimulatory activity. MEASUREMENTS AND MAIN RESULTS: TIP peptide directly activates ENaC, but not the Na(+)-K(+)-ATPase, upon binding to the carboxy-terminal domain of the α subunit of the channel. In the presence of PLY, a mediator of pneumococcal-induced pulmonary edema, this binding stabilizes the ENaC-PIP2-MARCKS complex, which is necessary for the open probability conformation of the channel and preserves ENaC-α protein expression, by means of blunting the protein kinase C-α pathway. Triple-mutant TNF knock-in mice are more prone than wild-type mice to develop edema with low-dose intratracheal PLY, correlating with reduced pulmonary ENaC-α subunit expression. CONCLUSIONS: These results demonstrate a novel TNF-mediated mechanism of direct ENaC activation and indicate a physiological role for the lectin-like domain of TNF in the resolution of alveolar edema during inflammation.


Subject(s)
Epithelial Sodium Channel Agonists/metabolism , Epithelial Sodium Channels/metabolism , Peptides, Cyclic/metabolism , Pulmonary Alveoli/metabolism , Pulmonary Edema/metabolism , Streptolysins , Tumor Necrosis Factor-alpha/metabolism , Animals , Bacterial Proteins , Epithelial Sodium Channel Agonists/chemistry , Epithelial Sodium Channels/chemistry , Female , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Peptides, Cyclic/chemistry , Pulmonary Alveoli/microbiology , Pulmonary Edema/microbiology , Tumor Necrosis Factor-alpha/chemistry
20.
Am J Respir Cell Mol Biol ; 50(5): 953-62, 2014 May.
Article in English | MEDLINE | ID: mdl-24303840

ABSTRACT

Increased activity of lung epithelial sodium channels (ENaCs) contributes to the pathophysiology of cystic fibrosis (CF) by increasing the rate of epithelial lining fluid reabsorption. Inter-α-inhibitor (IαI), a serum protease inhibitor, may decrease ENaC activity by preventing its cleavage by serine proteases. High concentrations of IαI were detected in the bronchoalveolar lavage fluid (BALF) of children with CF and lower airway diseases. IαI decreased amiloride-sensitive (IENaC) but not cAMP-activated Cl(-) currents across confluent monolayers of rat ATII, and mouse nasal epithelial cells grew in primary culture by 45 and 25%, respectively. Changes in IENaC by IαI in ATII cells were accompanied by increased levels of uncleaved (immature) surface α-ENaC. IαI increased airway surface liquid depth overlying murine nasal epithelial cells to the same extent as amiloride, consistent with ENaC inhibition. Incubation of lung slices from C57BL/6, those lacking phenylalanine at position 508 (∆F508), or CF transmembrane conductance regulator knockout mice with IαI for 3 hours decreased the open probability of their ENaC channels by 50%. ∆F508 mice had considerably higher levels the amiloride-sensitive fractions of ENaC nasal potential difference (ENaC-NPD) than wild-type littermates and only background levels of IαI in their BALF. A single intranasal instillation of IαI decreased their ENaC-NPD 24 hours later by 25%. In conclusion, we show that IαI is present in the BALF of children with CF, is an effective inhibitor of ENaC proteolysis, and decreases ENaC activity in lung epithelial cells of ∆F508 mice.


Subject(s)
Alpha-Globulins/metabolism , Epithelial Cells/metabolism , Epithelial Sodium Channel Agonists/metabolism , Epithelial Sodium Channels/metabolism , Animals , Bronchoalveolar Lavage Fluid , Cells, Cultured , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Humans , Lung/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Oocytes/metabolism , Rats , Xenopus laevis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...