Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Total Environ ; 925: 171692, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38485013

ABSTRACT

Biodiversity underpins the functioning of ecosystems and the diverse benefits that nature provides to people, yet is being lost at an unprecedented rate. To halt or reverse biodiversity loss, it is critical to understand the complex interdependencies between biodiversity and key drivers and sectors to inform the development of holistic policies and actions. We conducted a literature review on the interlinkages between biodiversity and climate change, food, water, energy, transport and health ("the biodiversity nexus"). Evidence extracted from 194 peer-reviewed articles was analysed to assess how biodiversity is being influenced by and is influencing the other nexus elements. Out of the 354 interlinkages between biodiversity and the other nexus elements, 53 % were negative, 29 % were positive and 18 % contained both positive and negative influences. The majority of studies provide evidence of the negative influence of other nexus elements on biodiversity, highlighting the substantial damage being inflicted on nature from human activities. The main types of negative impacts were land or water use/change, land or water degradation, climate change, and direct species fatalities through collisions with infrastructure. Alternatively, evidence of biodiversity having a negative influence on the other nexus elements was limited to the effects of invasive alien species and vector-borne diseases. Furthermore, a range of studies provided evidence of how biodiversity and the other nexus elements can have positive influences on each other through practices that promote co-benefits. These included biodiversity-friendly management in relevant sectors, protection and restoration of ecosystems and species that provide essential ecosystem services, green and blue infrastructure including nature-based solutions, and sustainable and healthy diets that mitigate climate change. The review highlighted the complexity and context-dependency of interlinkages within the biodiversity nexus, but clearly demonstrates the importance of biodiversity in underpinning resilient ecosystems and human well-being in ensuring a sustainable future for people and the planet.


Subject(s)
Ecosystem , Water , Humans , Biodiversity , Food , Introduced Species , Europe , Climate Change , Conservation of Natural Resources
3.
Sustain Sci ; 19(2): 595-614, 2024.
Article in English | MEDLINE | ID: mdl-38404522

ABSTRACT

Ambiguity is often recognized as an intrinsic aspect of addressing complex sustainability challenges. Nevertheless, in the practice of transdisciplinary sustainability research, ambiguity is often an 'elephant in the room' to be either side-stepped or reduced rather than explicitly mobilized in pursuit of solutions. These responses threaten the salience and legitimacy of sustainability science by masking the pluralism of real-world sustainability challenges and how research renders certain frames visible and invisible. Critical systems thinking (CST) emerged from the efforts of operational researchers to address theoretical and practical aspects of ambiguity. By adapting key concepts, frameworks, and lessons from CST literature and case studies, this paper aims to establish (1) an expansive conceptualization of ambiguity and (2) recommendations for operationalizing ambiguity as a valuable means of addressing sustainability challenges. We conceptualize ambiguity as an emergent feature of the simultaneous and interacting boundary processes associated with being, knowing, and intervening in complex systems, and propose Reflexive Boundary Critique (RBC) as a novel framework to help navigate these boundary processes. Our characterization of ambiguity acknowledges the boundary of a researcher's subjective orientation and its influence on how ambiguity is exposed and mediated in research (being), characterizes knowledge as produced through the process of making boundary judgments, generating a partial, contextual, and provisional frame (knowing), and situates a researcher as part of the complexity they seek to understand, rendering any boundary process as a form of intervention that reinforces or marginalizes certain frames and, in turn, influences action (intervening). Our recommendations for sustainability scientists to operationalize ambiguity include (1) nurturing the reflexive capacities of transdisciplinary researchers to navigate persistent ambiguity (e.g., using our proposed framework of RBC), and (2) grappling with the potential for and consequences of theoretical incommensurability and discordant pluralism. Our findings can help sustainability scientists give shape to and embrace ambiguity as a fundamental part of rigorous sustainability science.

4.
Sustain Sci ; 18(4): 1773-1794, 2023.
Article in English | MEDLINE | ID: mdl-37360150

ABSTRACT

Climate change is increasing the frequency and the severity of extreme events in river basins around the world. Efforts to build resilience to these impacts are complicated by the social-ecological interactions, cross-scale feedbacks, and diverse actor interests that influence the dynamics of change in social-ecological systems (SESs). In this study, we aimed to explore big-picture scenarios of a river basin under climate change by characterizing future change as emergent from interactions between diverse efforts to build resilience and a complex, cross-scale SES. To do so, we facilitated a transdisciplinary scenario modeling process structured by the cross-impact balances (CIB) method, a semi-quantitative method that applies systems theory to generate internally consistent narrative scenarios from a network of interacting drivers of change. Thus, we also aimed to explore the potential for the CIB method to surface diverse perspectives and drivers of change in SESs. We situated this process in the Red River Basin, a transboundary basin shared by the United States and Canada where significant natural climatic variability is worsened by climate change. The process generated 15 interacting drivers ranging from agricultural markets to ecological integrity, generating eight consistent scenarios that are robust to model uncertainty. The scenario analysis and the debrief workshop reveal important insights, including the transformative changes required to achieve desirable outcomes and the cornerstone role of Indigenous water rights. In sum, our analysis surfaced significant complexities surrounding efforts to build resilience and affirmed the potential for the CIB method to generate unique insights about the trajectory of SESs. Supplementary Information: The online version contains supplementary material available at 10.1007/s11625-023-01308-1.

SELECTION OF CITATIONS
SEARCH DETAIL
...