Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Animals (Basel) ; 13(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38066968

ABSTRACT

Cytoplasmic linker-associated protein-2 (CLASP2) is a member of the CLIP-associating proteins (CLASPs) family involved in the structure and function of microtubules and Golgi apparatus. Several studies performed using different mammalian and non-mammalian model organisms reported that CLASP2 controls microtubule dynamics and the organization of microtubule networks. In Drosophila and mice, an important role of CLASP2 during the development of germ cell lines has been uncovered. However, no study has clearly defined its role during fish germ cell differentiation. In the present study, we used two excellent aquatic animal models among teleost fish: zebrafish (Danio rerio) and guppy (Poecilia reticulata). Using qPCR, we found that the clasp2 transcript level is significantly high in the testis of both fish. Then, by in situ hybridization, we localized the clasp2 transcript in the spermatozoa of zebrafish and the spermatozeugmata of guppy. Our data suggest a potential role for this gene in the last stage of spermiogenesis in fish.

2.
Microsc Microanal ; 29(5): 1764-1773, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37639707

ABSTRACT

Olfaction is fundamental for sensing environmental chemicals and has obvious adaptive advantages. In fish, the peripheral olfactory organ is composed of lamellae in which the olfactory mucosa contains three main categories of olfactory sensory neurons (OSNs) as follows: ciliated (cOSNs), microvillous (mOSNs), and crypt cells. We studied the appearance of these different OSNs during development of Poecilia reticulata, given its growing use as animal model system. We performed immunohistochemical detection of molecular markers specific for the different OSNs, carrying out image analyses for marked-cell counting and measuring optical density. The P. reticulata olfactory organ did not show change in size during the first weeks of life. The proliferative activity increased at the onset of secondary sexual characters, remaining high until sexual maturity. Then, it decreased in both sexes, but with a recovery in females, probably in relation to their almost double body growth, compared to males. The density of both cOSNs and mOSNs remained constant throughout development, probably due to conserved functions already active in the fry, independently of the sex. The density of calretinin-positive crypt cells decreased progressively until sexual maturity, whereas the increased density of calretinin-negative crypt cell fraction, prevailing in later developmental stages, indicated their probable involvement in reproductive activities.


Subject(s)
Olfactory Receptor Neurons , Poecilia , Animals , Female , Male , Calbindin 2 , Olfactory Mucosa
3.
Int J Mol Sci ; 24(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37446129

ABSTRACT

In vertebrates, neurotrophins and their receptors play a fundamental role in the central and peripheral nervous systems. Several studies reported that each neurotrophin/receptor signalling pathway can perform various functions during axon development, neuronal growth, and plasticity. Previous investigations in some fish species have identified neurotrophins and their receptors in the spinal cord under physiological conditions and after injuries, highlighting their potential role during regeneration. In our study, for the first time, we used an excellent animal model, the zebrafish (Danio rerio), to compare the mRNA localization patterns of neurotrophins and receptors in the spinal cord. We quantified the levels of mRNA using qPCR, and identified the transcription pattern of each neurotrophin/receptor pathway via in situ hybridization. Our data show that ngf/trka are the most transcribed members in the adult zebrafish spinal cord.


Subject(s)
Nerve Growth Factors , Zebrafish , Animals , Nerve Growth Factors/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Receptors, Nerve Growth Factor/genetics , Spinal Cord/metabolism , RNA, Messenger/metabolism , Receptor, trkA/genetics
4.
Microsc Microanal ; 28(1): 227-242, 2022 02.
Article in English | MEDLINE | ID: mdl-35177137

ABSTRACT

Olfactory sensory neurons (OSNs) of fish belong to three main types: ciliated olfactory sensory neurons (cOSNs), microvillous olfactory sensory neurons (mOSNs), and crypt cells. Mercury is a toxic metal harmful for olfaction. We exposed the olfactory epithelium of zebrafish to three sublethal Hg2+ concentrations. Molecular markers specific for the different types of OSNs were immunohistochemically detected. Image analysis of treated sections enabled counting of marked cells and measurement of staining optical density indicative of the response of OSNs to Hg2+ exposure. The three types of OSNs reacted to mercury in a different way. Image analysis revealed that mOSNs are more susceptible to Hg2+ exposure than cOSNs and crypt cell density decreases. Moreover, while the ratio between sensory/nonsensory epithelium areas is unchanged, epithelium thickness drops, and dividing cells increase in the basal layer of the olfactory epithelium. Cell death but also reduction of apical processes and marker expression could account for changes in OSN immunostaining. Also, the differential results between dorsal and ventral halves of the olfactory rosette could derive from different water flows inside the olfactory chamber or different subpopulations in OSNs.


Subject(s)
Mercury , Olfactory Receptor Neurons , Animals , Ions/metabolism , Mercury/metabolism , Olfactory Mucosa , Olfactory Receptor Neurons/metabolism , Zebrafish/physiology
5.
Histochem Cell Biol ; 156(1): 19-34, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33770286

ABSTRACT

The germline is a key feature of sexual animals and the ways in which it separates from the soma differ widely across Metazoa. However, at least at some point during germline differentiation, some cytoplasmic supramolecular structures (collectively called germ plasm-related structures) are present and involved in its specification and/or differentiation. The factors involved in the assembly of these granular structures are various and non-ubiquitous among animals, even if some functional patterns and the presence of certain domains appear to be shared among some. For instance, the LOTUS domain is shared by Oskar, the Holometabola germ plasm master regulator, and some Tudor-family proteins assessed as being involved in the proper assembly of germ granules of different animals. Here, we looked for the presence of LOTUS-containing proteins in the transcriptome of Ruditapes philippinarum (Bivalvia). Such species is of particular interest because it displays annual renewal of gonads, sided by the renewal of germline differentiation pathways. Moreover, previous works have identified in its early germ cells cytoplasmic granules containing germline determinants. We selected the orthologue of TDRD7 as a candidate involved in the early steps of germline differentiation through bioinformatic predictions and immunohistological patterning (immunohistochemistry and immunofluorescence). We observed the expression of the protein in putative precursors of germline cells, upstream to the germline marker Vasa. This, added to the fact that orthologues of this protein are involved in the assembly of germ granules in mouse, zebrafish, and fly, makes it a worthy study unit for investigations on the formation of such structures in bivalves.


Subject(s)
Cytoplasmic Granules/metabolism , Germ Cells/metabolism , Ribonucleoproteins/metabolism , Animals , Bivalvia , Cell Differentiation , Germ Cells/cytology , Ribonucleoproteins/analysis
6.
Results Probl Cell Differ ; 68: 355-377, 2019.
Article in English | MEDLINE | ID: mdl-31598864

ABSTRACT

The knowledge of the morphological and functional aspects of mammalian glial cells has greatly increased in the last few decades. Glial cells represent the most diffused cell type in the central nervous system, and they play a critical role in the development and function of the brain. Glial cell dysfunction has recently been shown to contribute to various neurological disorders, such as autism, schizophrenia, pain, and neurodegeneration. For this reason, glia constitutes an interesting area of research because of its clinical, diagnostic, and pharmacological relapses. In this chapter, we present and discuss the cytoarchitecture of glial cells in tetrapods from an evolutive perspective. GFAP and vimentin are main components of the intermediate filaments of glial cells and are used as cytoskeletal molecular markers because of their high degree of conservation in the various vertebrate groups. In the anamniotic tetrapods and their progenitors, Rhipidistia (Dipnoi are the only extant rhipidistian fish), the cytoskeletal markers show a model based exclusively on radial glial cells. In the transition from primitive vertebrates to successively evolved forms, the emergence of a new model has been observed which is believed to support the most complex functional aspects of the nervous system in the vertebrates. In reptiles, radial glial cells are prevalent, but star-shaped astrocytes begin to appear in the midbrain. In endothermic amniotes (birds and mammals), star-shaped astrocytes are predominant. In glial cells, vimentin is indicative of immature cells, while GFAP indicates mature ones.Olfactory receptor neurons undergo continuous turnover, so they are an easy model for neurogenesis studies. Moreover, they are useful in neurotoxicity studies because of the exposed position of their apical pole to the external environment. Among vertebrates, fish represent a valid biological model in this field. In particular, zebrafish, already used in laboratories for embryological, neurobiological, genetic, and pathophysiological studies, is the reference organism in olfactory system research. Smell plays an important role in the reproductive behavior of fish, with direct influences also on the numerical consistency of their populations. Taking into account that a lot of species have considerable economic importance, it is necessary to verify if the model of zebrafish olfactory organ is also directly applicable to other fish. In this chapter, we focus on crypt cells, a morphological type of olfactory cells specific of fish. We describe hypothetical function (probably related with social behavior) and evolutive position of these cells (prior to the appearance of the vomeronasal organ in tetrapods). We also offer the first comparison of the molecular characteristics of these receptors between zebrafish and the guppy. Interestingly, the immunohistochemical expression patterns of known crypt cell markers are not overlapping in the two species.


Subject(s)
Biomarkers/metabolism , Neuroglia/metabolism , Olfactory Receptor Neurons/metabolism , Zebrafish , Animals , Neurogenesis , Zebrafish/physiology
7.
Aquat Toxicol ; 206: 14-23, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30415017

ABSTRACT

The olfactory epithelium of fish includes three main types of olfactory sensory neurons (OSNs). Whereas ciliated (cOSNs) and microvillous olfactory sensory neurons (mOSNs) are common to all vertebrates, a third, smaller group, the crypt cells, is exclusive for fish. Dissolved pollutants reach OSNs, thus resulting in impairment of the olfactory function with possible neurobehavioral damages, and nickel represents a diffuse olfactory toxicant. We studied the effects of three sublethal Ni2+ concentrations on the different OSN populations of zebrafish that is a widely used biological model. We applied image analysis with cell count and quantification of histochemically-detected markers of the different types of OSNs. The present study shows clear evidence of a differential responses of OSN populations to treatments. Densitometric values for Gα olf, a marker of cOSNs, decreased compared to control and showed a concentration-dependent effect in the ventral half of the olfactory rosette. The densitometric analysis of TRPC2, a marker of mOSNs, revealed a statistically significant reduction compared to control, smaller than the decrease for Gα olf and without concentration-dependent effects. After exposure, olfactory epithelium stained with anti-calretinin, a marker of c- and mOSNs, revealed a decrease in thickness while the sensory area appeared unchanged. The thickness reduction together with increased densitometric values for HuC/D, a marker of mature and immature neurons, suggests that the decrements in Gα olf and TRPC2 immunostaining may depend on cell death. However, reductions in the number of apical processes and of antigen expression could be a further explanation. We hypothesize that cOSNs are more sensitive than mOSNs to Ni2+ exposure. Difference between subpopulations of OSNs or differences in water flux throughout the olfactory cavity could account for the greater susceptibility of the OSNs located in the ventral half of the olfactory rosette. Cell count of anti-TrkA immunopositive cells reveals that Ni2+ exposure does not affect crypt cells. The results of this immunohistochemical study are not in line with those obtained by electro-olfactogram.


Subject(s)
Nickel/toxicity , Olfactory Receptor Neurons/drug effects , Water Pollutants, Chemical/toxicity , Zebrafish/physiology , Animals , GTP-Binding Protein alpha Subunits/metabolism , Olfactory Mucosa/drug effects
8.
Histochem Cell Biol ; 149(1): 105-110, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28875375

ABSTRACT

Reconstitution and renewal of tissues are key topics in developmental biology. In this brief work, we analyzed the wintry spent phase of the reproductive cycle in the Manila clam Ruditapes philippinarum (Bivalvia, Veneridae) in order to study the gonad rebuilding that in this species occurs at the beginning of the warmer months. We labeled VASA homolog protein-a germ cell marker-and compared the histological observations of the spent phase with those of the previously analyzed gametogenic phase. In R. philippinarum, during the reproductive season, most of the body mass is represented by sack-like structures (acini) full of developing gametes. In that period, VASA-stained cells are present at the basal pole of the gut epithelium, in the connective tissue, and around the acini. We here show that during the spent phase large portions of the intestine lack such cell type, except for some areas showing a few faintly VASA-stained cells. Cells with similar nuclear morphology are present among loosely organized cells of connective tissue, sometimes as single units, sometimes in small groups, rarely partially organized in primordial gonadic structures. These observations match the findings of RNA-targeting studies that during the spent phase identified the source of bivalve germ cells within the connective tissue in the form of quiescent units and add new information on the possible maintenance of VASA-stained, multipotent cells among the batiprismatic cells of the intestine during the whole life span of these bivalves.


Subject(s)
Biological Clocks , Germ Cells/cytology , Gonads/cytology , Seasons , Sexual Behavior, Animal , Animals , Bivalvia , Cell Line
9.
Vet Dermatol ; 29(1): 60-e24, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28815758

ABSTRACT

BACKGROUND: Cutaneous squamous cell carcinoma (cSCC) is an uncommon disease affecting koi carp (Cyprinus carpio). Cutaneous papilloma (carp pox) is a benign epidermal proliferation reported in koi and has been shown to be caused by Cyprinid Herpesvirus 1 (CyHV1). HYPOTHESIS/OBJECTIVES: Histological, ultrastructural and molecular investigations were carried out aiming to investigate the aetiology of cSCC within archived tissue samples. ANIMALS: Surgical samples of masses located on the integument, fins and lips of 13 koi carp belonging to different private owners were included in this retrospective study. METHODS: CyHV1 DNA and RNA presence were investigated in five cSCC formalin-fixed paraffin-embedded tissue samples to recognize CyHV1 presence and its replication activity. RESULTS: All cases were histologically diagnosed as cSCC. The ultrastructural observations confirmed the squamous differentiation of neoplastic epithelial cells, which showed abundant tonofilament bundles and desmosomes. Although no virus particles were revealed ultrastructurally, the molecular investigation detected viral DNA in five epidemiologically unrelated cSCC. Viral transcript analysis revealed no evidence for viral replication in the tested cSCC, which could be consistent with latent infection. CONCLUSIONS AND CLINICAL IMPORTANCE: These findings illustrate the frequent association of carp cSCC with CyHV1, although a direct cause-effect relationship cannot be established at this time. Therefore, surveillance programmes should take into account the suspected viral origin of cSCC to better inform prevention and control of CyHV1 in the future.


Subject(s)
Carcinoma, Squamous Cell/veterinary , Carps/virology , DNA, Viral/genetics , Fish Diseases/virology , Herpesviridae Infections/veterinary , Herpesviridae/genetics , Skin Neoplasms/veterinary , Animals , Carcinoma, Squamous Cell/etiology , Carcinoma, Squamous Cell/virology , Herpesviridae Infections/complications , Herpesviridae Infections/virology , Skin Neoplasms/etiology , Skin Neoplasms/virology
10.
Chaos ; 27(4): 043101, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28456156

ABSTRACT

We observed a remarkable near-to-unity correlation between the time series of Acoustic Emissions (AEs) collected at two stations approximately 300 km apart from each other and located along the Apennine belt (Italy). This finding prompted us to verify the hypothesis that AE signals can carry with them an indication of anomalies in a crustal stress trend, possibly related to earthquake occurrences. Thus, we checked the ability of Recurrence Quantification Analysis and Fractal Analysis as applied to AE to identify signal phase transitions before the crisis occurs. The sharp drop of the Percent of Determinism after its maximum value, and simultaneously with minimum values of the Fractal Dimension (D), few days before some seismic events take place, seems to point to the relevance of the proposed approach as precursor detection.

11.
Brain Struct Funct ; 222(7): 3063-3074, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28280935

ABSTRACT

Olfactory crypt neurons have been observed in several bony fishes and chondrichtyans. Although their morphology is uniform in all fish, very few is known about their antigenic properties, usually studied in zebrafish, but quite overlooked in other species. We tested in Poecilia reticulata (guppy) the two antibodies recognized to mark zebrafish crypt cells: while anti-S100 showed an immunohistochemical pattern comparable to what reported in zebrafish, anti-TrkA gave no signal. Western blot analysis revealed that S100-antiserum bound an antigen of expected weight, probably belonging to the S100 family. On the contrary, anti-TrkA detected more bands, but the protein/s might be too much diffused and/or diluted in the tissue to be detected with immunohistochemistry. Because of the high level of conservation in the Trk family proteins of the kinase domain, on which anti-TrkA was produced, we also tested anti-TrkB to exclude cross reactivity. Immunohistochemistry and Western blot confirmed that anti-TrkB displayed high specificity to its target and a different staining pattern compared to anti-TrkA, but, as anti-TrkA, it did not label crypt neurons. Finally, we documented that calretinin, a known marker of zebrafish ciliated and microvillous olfactory cells, in the guppy is expressed also by a subpopulation of S100-positive crypt neurons. These results reveal differences in antigen expression between zebrafish and guppy crypt cells. Together with the already known species-specific projections to the olfactory bulb and a heterogeneous panel of odorants, our findings support the possibility that crypt cells are functionally less uniform as supposed.


Subject(s)
Neurons/metabolism , Olfactory Bulb/cytology , Poecilia/anatomy & histology , Zebrafish/anatomy & histology , Animals , Brain/cytology , Calbindin 2/metabolism , Female , Microscopy, Electron, Transmission , Neurons/ultrastructure , Olfactory Pathways/metabolism , Olfactory Pathways/ultrastructure , Receptor, trkB/metabolism , S100 Proteins/metabolism , Species Specificity
12.
Aquat Toxicol ; 183: 54-62, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27992776

ABSTRACT

The peripheral olfactory system of fish is in direct contact with the external aqueous environment, so dissolved contaminants can easily impair sensory functions and cause neurobehavioral injuries. The olfactory epithelium of fish is arranged in lamellae forming a rosette in the olfactory cavity and contains three main types of olfactory sensory neurons (OSNs): ciliated (cOSNs) and microvillous olfactory sensory neurons (mOSNs), common to all vertebrates, and a third minor group of olfactory neurons, crypt cells, absent in tetrapods. Since copper is a ubiquitously diffusing olfactory toxicant and a spreading contaminant in urban runoff, we investigated the effect of low copper concentration on the three different OSNs in the olfactory epithelium of zebrafish, a model system widely used in biological research. Image analysis was applied for morphometry and quantification of immunohistochemically detected OSNs. Copper exposure resulted in an evident decrease in olfactory epithelium thickness. Moreover, after exposure, the lamellae of the dorsal and ventral halves of the olfactory rosettes showed a different increase in their sensory areas, suggesting a lateral migration of new cells into non-sensory regions. The results of the present study provide clear evidence of a differential response of the three neural cell populations of zebrafish olfactory mucosa after 96h of exposure to copper ions at the sublethal concentration of 30µgL-1. Densitometric values of cONS, immunostained with anti-G αolf, decreased of about 60% compared to the control. When the fish were transferred to water without copper addition and examined after 3, 10 and 30days, we observed a partial restoration of anti-G αolf staining intensity to normal condition. The recovery of cOSNs appeared sustained by neuronal proliferation, quantified with anti-PCNA immunostaining, in particular in the early days after exposure. The densitometric analysis applied to mOSNs, immunostained with anti-TRPC2, revealed a statistically significant decrease of about 30% compared to the control. For cOSNs and mOSNs, the decrement in staining intensity may be indicative of cell death, but reduction in antigen expression may not be excluded. In the post-exposure period of 1 month we did not find recovery of mOSNs. We hypothesize that cOSNs are more sensitive than mOSNs to copper treatment, but also more prompted to tissue repair. Anti-TrkA-immunopositive crypt cells appeared not to be affected by copper exposure since statistical analysis excluded any significant difference between the control and treated fish. Comparative studies on OSNs would greatly enhance our understanding of the mechanisms of olfaction.


Subject(s)
Copper/toxicity , Olfactory Receptor Neurons/drug effects , Water Pollutants, Chemical/toxicity , Zebrafish/physiology , Animals , Olfactory Mucosa/cytology , Olfactory Mucosa/drug effects
13.
J Anat ; 228(1): 59-69, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26510631

ABSTRACT

Chronic renal disease is known to alter olfactory function, but the specific changes induced in olfactory organs during this process remain unclear. Of the uraemic toxins generated during renal disease, high levels of urea are known to induce hyposmic conditions. In this study, the effects of environmental exposure to elevated concentrations of urea (7, 13.5 and 20 g L(-1)) on the sensory mucosa of zebrafish in acute toxicity and chronic toxicity tests were described. It was observed that lamellae maintained structural integrity and epithelial thickness was slightly reduced, but only following exposure to the highest concentrations of urea. Pan-neuronal labelling with anti-Hu revealed a negative correlation with levels of urea, leading to investigation of whether distinct neuronal subtypes were equally sensitive. Using densitometric analysis of immunolabelled tissues, numbers of Gα olf-, TRPC2- and TrkA-expressing cells were compared, representing ciliated, microvillous and crypt neurons, respectively. The three neuronal subpopulations responded differently to increasing levels of urea. In particular, crypt cells were more severely affected than the other cell types, and Gα olf-immunoreactivity was found to increase when fish were exposed to low doses of urea. It can be concluded that exposure to moderate levels of urea leads to sensory toxicity directly affecting olfactory organs, in accordance with the functional olfactometric measurements previously reported in the literature.


Subject(s)
Olfactory Mucosa/drug effects , Urea/toxicity , Water Pollutants/toxicity , Zebrafish/physiology , Analysis of Variance , Animals , GTP-Binding Protein alpha Subunits/metabolism , Immunohistochemistry , Olfactory Bulb/drug effects , Olfactory Receptor Neurons/drug effects
14.
Brain Struct Funct ; 221(2): 955-67, 2016 Mar.
Article in English | MEDLINE | ID: mdl-25433448

ABSTRACT

The olfactory and vomeronasal systems of vertebrates are characterised by neurogenesis occurring throughout life. The regenerative ability of olfactory receptor neurons relies on specific glial cells, the olfactory and vomeronasal axon-surrounding cells. Numerous studies have examined mammalian olfactory ensheathing cells which are considered potential candidates for spinal cord injury repair using cell-based therapy. With regard to non-mammalian vertebrates, limited information is available on these glial cells in fish, and there is no information on them in terrestrial anamniotes, the amphibians. In the present research, we studied the immunocytochemical characteristics of axon-surrounding cells in Ambystoma mexicanum. Urodeles have relatively simple olfactory and vomeronasal systems, and represent a good model for studying ensheathing cells in extant representatives of basal tetrapods. Sections from the decalcified heads of A. mexicanum were immunocytochemically processed for the detection of proteins used in research on mammalian olfactory-ensheathing cells. S100, GFAP and NCAM were clearly observed. p75NTR, Gal-1 and PSA-NCAM showed weak staining. No vimentin immunopositivity was observed. The corresponding areas of the olfactory and vomeronasal pathways displayed the same staining characteristics, with the exception of Gal-1, p75NTR and PSA-NCAM in the mucosae. The degree of marker expression was not uniform throughout the sensory pathways. In contrast to fish, both olfactory and vomeronasal nerves displayed uniform staining intensity. This study showed that some markers for mammalian and fish-ensheathing glia are also applicable in urodeles. The olfactory systems of vertebrates show similarities, and also clear dissimilarities. Further investigations are required to ascertain the functional significance of these regional and interspecific differences.


Subject(s)
Ambystoma mexicanum/metabolism , Neuroglia/metabolism , Animals , Axons/metabolism , Olfactory Pathways/metabolism , Receptor, Nerve Growth Factor/metabolism , Smell/physiology , Spinal Cord Injuries/metabolism , Vomeronasal Organ/physiology
15.
J Anat ; 224(2): 192-206, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24164558

ABSTRACT

Continuous lifelong neurogenesis is typical of the vertebrate olfactory system. The regenerative ability of olfactory receptor neurons is dependent on the glial cell type specific to the olfactory pathway, designated 'olfactory ensheathing cells'. Several studies to date have focused on mammalian olfactory ensheathing cells, owing to their potential roles in cell-based therapy for spinal cord injury repair. However, limited information is available regarding this glial cell type in non-mammalian vertebrates, particularly anamniotes. In the current immunocytochemical study, we analysed the features of olfactory ensheathing cells in the zebrafish, Danio rerio. Fish provide a good model for studying glial cells associated with the olfactory pathway of non-mammalian vertebrates. In particular, zebrafish has numerous valuable features that enable its use as a prime model organism for genetic, neurobiological and developmental studies, as well as toxicology and genomics research. Paraffin sections from decalcified heads of zebrafish were processed immunocytochemically to detect proteins used in the research on mammalian olfactory ensheathing cells, including glial fibrillary acid protein (GFAP), S100, neural cell adhesion molecule (NCAM), polysialylated NCAM (PSA-NCAM), vimentin (VIM), p75NTR and galactin (Gal)-1. Notably, GFAP, S100, NCAM and Gal-1 were clearly observed, whereas no vimentin staining was detected. Weak immunostaining for PSA-NCAM and p75NTR was evident. Moreover the degree of marker expression was not uniform in various tracts of the zebrafish olfactory pathway. The immunostaining patterns of the zebrafish olfactory system are distinct from those of other fish to some extent, suggesting interspecific differences. We also showed that the olfactory pathway of zebrafish expresses markers of mammalian olfactory ensheathing cells. The olfactory systems of vertebrates have similarities but there are also marked variations between them. The issue of whether regional and interspecific differences in immunostaining patterns of olfactory pathway markers have functional significance requires further investigation.


Subject(s)
Olfactory Bulb/cytology , Olfactory Pathways/cytology , Animals , Biomarkers/analysis , Immunohistochemistry , Olfactory Bulb/chemistry , Olfactory Receptor Neurons/cytology , S100 Proteins/analysis , Zebrafish
16.
Brain Struct Funct ; 218(2): 539-49, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22527122

ABSTRACT

In the olfactory system of vertebrates, neurogenesis occurs throughout life. The regenerating activities of the olfactory receptor neurons are connected to particular glial cells in the olfactory pathway: the olfactory ensheathing cells. A considerable number of studies are available in literature regarding mammalian olfactory ensheathing cells; this is due to their potential role in cell-based therapy for spinal cord injury repair. But very little is known about these cells in non-mammalian vertebrates. In this study we examined the immunocytochemical characteristics of the olfactory ensheathing cells in fish, which provide a good model for the study of glial cells in the olfactory pathway of non-mammalian vertebrates. Paraffin sections from decalcified heads of Poecilia reticulata (microsmatic fish) and Carassius auratus (macrosmatic fish) were processed to immunocytochemically detect ensheathing cell markers used in research on mammals: GFAP, S100, NCAM, PSA-NCAM, vimentin, p75NTR and galectin-1. GFAP, S100 and NCAM were clearly detected in both fish, though the intracranial tract of the primary olfactory pathway of Carassius appears more S100 stained than the extracranial tract. P75NTR staining is more evident in Poecilia, PSA-NCAM positivity in Carassius. A slight vimentin immunostaining was detected only in Carassius. No galectin-1 staining appeared in the olfactory pathways of either fish. This study shows that some markers for mammalian olfactory ensheathing cells also stain the olfactory pathway in fish. Immunocytochemical staining differs in the two fish under examination, even along the various tracts of the olfactory pathway in the same species.


Subject(s)
Fish Proteins/metabolism , Goldfish/metabolism , Immunohistochemistry , Neuroglia/metabolism , Olfactory Pathways/metabolism , Poecilia/metabolism , Sensory Receptor Cells/metabolism , Animals , Biomarkers/metabolism , Female , Goldfish/anatomy & histology , Male , Olfactory Pathways/cytology , Paraffin Embedding , Poecilia/anatomy & histology , Smell
17.
J Exp Biol ; 215(Pt 15): 2711-5, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22786649

ABSTRACT

Crypt cells are one of three types of olfactory sensory neuron, differing from ciliated and microvillar cells in shape, localization and number, and found only in fish. Although crypt cells are morphologically well characterized, their function remains unclear. They were hypothesized to be involved in reproductive behaviours by detecting sex pheromones, but electrophysiological investigations revealed sensitivity to only amino acids. However, the number of crypt cells in adult guppies is not the same in the two sexes. In this study, we compared the size of the crypt cell population in juvenile guppies during the first 90 days after birth. The purpose of our study was to clarify whether a correlation exists between sex and the number of these olfactory neurons. The data show that guppies reach adult crypt cell density when they become sexually mature. Despite a constant increment in volume during development of the olfactory organ, the minimum density of crypt neurons occurs at ~45 days. Moreover, in the early weeks, the density of crypt neurons is greater in males than in females because in females the total number of cells decreases significantly after just 7 days. In adults, however, crypt neurons are found in higher density in females than in males. These findings suggest that the number of crypt cells is sex specific, with independent developmental dynamics between males and females. A role in pheromone detection could explain such a difference, but the early appearance of crypt cells in the first days of life is suggestive of other, not sexually related, functions.


Subject(s)
Olfactory Bulb/cytology , Olfactory Bulb/growth & development , Poecilia/growth & development , Sexual Maturation/physiology , Animals , Animals, Newborn , Female , Fish Proteins/metabolism , Gonads/cytology , Gonads/metabolism , Immunohistochemistry , Male , Olfactory Bulb/metabolism , Poecilia/metabolism , S100 Proteins/metabolism
18.
Anat Rec (Hoboken) ; 292(10): 1569-76, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19685507

ABSTRACT

Olfaction in fish has been studied using preferentially macrosmatic species as models. In the present research, the labelling patterns of different neuronal markers and lectins were analyzed in the olfactory neurons and in their bulbar axonal endings in the guppy Poecilia reticulata, belonging to the group of microsmatic fish. We observed that calretinin immunostaining was confined to a population of olfactory receptor cells localized in the upper layers of the sensory mucosa, probably microvillous neurons innervating the lateral glomerular layer. Immunoreactivity for S100 proteins was mainly evident in crypt cells, but also in other olfactory cells belonging to subtypes projecting in distinct regions of the bulbs. Protein gene product 9.5 (PGP 9.5) was not detected in the olfactory system of the guppy. Lectin binding revealed the presence of N-acetylglucosamine and alpha-N-acetylgalactosamine residues in the glycoconjugates of numerous olfactory neurons ubiquitously distributed in the mucosa. The low number of sugar types detected suggested a reduced glycosidic variability that could be an index of restricted odorant discrimination, in concordance with guppy visual-based behaviors. Finally, we counted few crypt cells which were immunoreactive for S100 and calretinin. Crypt cells were more abundant in guppy females. This difference is in accordance with guppy gender-specific responses to pheromones. Cells immunoreactive to calretinin showed no evidence of ventral projections in the bulbs. We assumed the hypothesis that their odorant sensitivity is not strictly limited to pheromones or sexual signals in general.


Subject(s)
Olfactory Receptor Neurons/cytology , Poecilia/anatomy & histology , S100 Calcium Binding Protein G/metabolism , S100 Proteins/metabolism , Ubiquitin Thiolesterase/metabolism , Animals , Calbindin 2 , Female , Lectins , Male , Olfactory Receptor Neurons/metabolism , Poecilia/metabolism
19.
Anat Rec (Hoboken) ; 291(10): 1293-300, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18727107

ABSTRACT

The GLUT-1 isoform of the glucose transporter is commonly considered a reliable molecular marker of blood-brain barrier endothelia in the neural vasculature organized in a three-dimensional network of single vessels. The central nervous system of the axolotl Ambystoma mexicanum is characterized by a vascular architecture that contains both single and paired vessels. The presence and distribution of the GLUT-1 transporter are studied in this urodele using both immunoperoxidase histochemistry and immunogold technique. Light microscopy reveals immunopositivity in both parenchymal and meningeal vessels. The transverse-sectioned pairs of vessels do not show the same size. Furthermore, in the same pair, the two elements often differ in diameter. The main regions of the central nervous system show a different percentage of the paired structures. Only immunogold cytochemistry reveals different staining intensity in the two adjoined elements of a vascular pair. Colloidal gold particles show an asymmetric distribution in the endothelia of both single and paired vessels. These particles are more numerous on the abluminal surface than on the luminal one. The particle density is calculated in both vascular types. The different values could indicate functional differences between single and paired vessels and between the two adjoined elements of a pair, regarding glucose transport.


Subject(s)
Ambystoma mexicanum/metabolism , Blood Vessels/metabolism , Central Nervous System/blood supply , Glucose Transporter Type 1/metabolism , Ambystoma mexicanum/anatomy & histology , Animals , Biomarkers/metabolism , Blood-Brain Barrier/metabolism , Cerebral Arteries/metabolism , Cerebral Veins/metabolism , Endothelium, Vascular/metabolism , Female , Male , Microcirculation
20.
Microsc Res Tech ; 70(9): 782-9, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17661368

ABSTRACT

A study of the peripheral olfactory organ, with special attention to the olfactory epithelium, has been carried out in the guppy (Poecilia reticulata). Guppy is well known to have a vision-based sexual behavior. The olfactory chamber caudally opens directly in an accessory nasal sac, which is bent medially and gives rise to two recesses that can be considered secondary accessory nasal sacs, antero-medial and postero-medial, respectively. The sensory epithelium, which lines only the medial wall of the nasal cavity, is basically flat rising in a very low lamella only in the posterior part. The olfactory receptors are not evenly distributed in the olfactory mucosa, but aggregate in shallow folds separated by epithelial cells with evident microridges. Ciliated olfactory sensory neurons and microvillous olfactory sensory neurons are clearly identified by transmission electron microscopy (TEM). Scarce crypt olfactory neurons are found throughout the sensory folds. The nasal sacs indicates the capacity to regulate the flow of odorant molecules over the sensory epithelium, possibly through a pump-like mechanism associated with gill ventilation. The organization of the olfactory organ in guppy is simple and reminds what is found in early posthatching stages of fish which at the adult state have a well developed olfactory organ. This simple organization supports the idea that the guppy rely on olfaction less than other fish species provided with more extended olfactory receptorial surface.


Subject(s)
Olfactory Mucosa/cytology , Olfactory Mucosa/ultrastructure , Olfactory Receptor Neurons/ultrastructure , Poecilia/anatomy & histology , Animals , Female , Goblet Cells/ultrastructure , Male , Microscopy, Electron, Transmission , Olfactory Mucosa/anatomy & histology , Olfactory Receptor Neurons/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...