Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neurochem Res ; 46(8): 2066-2078, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34019198

ABSTRACT

Gamma-decanolactone (GD) has been shown to reduce epileptic behavior in different models, inflammatory decreasing, oxidative stress, and genotoxic parameters. This study assessed the GD effect on the pentylenetetrazole (PTZ) model after acute and subchronic treatment. We evaluated the expression of the inflammatory marker cyclooxygenase-2 (COX-2), GluN2B, a subunit of the NMDA glutamate receptor, adenosine A1 receptor, and GD genotoxicity and mutagenicity. Male and female mice were treated with GD (300 mg/kg) for 12 days. On the tenth day, they were tested in the Hot Plate test. On the thirteenth day, all animals received PTZ (90 mg/kg), and epileptic behavior PTZ-induced was observed for 30 min. Pregabalin (PGB) (30 mg/kg) was used as a positive control. Samples of the hippocampus and blood were collected for Western Blotting analyses and Comet Assay and bone marrow to the Micronucleus test. Only the acute treatment of GD reduced the seizure occurrence and increased the latency to the first stage 3 seizures. Males treated with GD for 12 days demonstrated a significant increase in the expression of the GluN2B receptor and a decrease in the COX-2 expression. Acute and subchronic treatment with GD and PGB reduced the DNA damage produced by PTZ in males and females. There is no increase in the micronucleus frequency in bone marrow after subchronic treatment. This study suggests that GD, after 12 days, could not reduce PTZ-induced seizures, but it has been shown to protect against DNA damage, reduce COX-2 and increase GluN2B expression.


Subject(s)
Cyclooxygenase 2/metabolism , Lactones/therapeutic use , Neuroprotective Agents/therapeutic use , Receptor, Adenosine A1/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Seizures/drug therapy , Animals , Body Weight/drug effects , DNA Damage/drug effects , Female , Lactones/toxicity , Male , Mice , Neuroprotective Agents/toxicity , Pentylenetetrazole , Seizures/chemically induced , Seizures/metabolism
2.
Fundam Clin Pharmacol ; 35(2): 351-363, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32851690

ABSTRACT

This study evaluated the effect of lacosamide (LCM) on biochemical and mitochondrial parameters after PTZ kindling in mice. Male mice were treated on alternative days for a period of 11 days with LCM (20, 30, or 40 mg/kg), saline, or diazepam (2 mg/kg), before PTZ administration (50 mg/kg). The hippocampi were collected to evaluate free radicals, the activities of superoxide dismutase (SOD), catalase (CAT), and the mitochondrial complexes I-III, II, and II-III, as well as Bcl-2 and cyclo-oxygenase-2 (COX-2) expressions. Hippocampi, blood, and bone marrow were collected for genotoxic and mutagenic evaluations. LCM 40 mg/kg increased latency and decreased percentage of seizures, only on the 3rd day of observation. The dose of 30 mg/kg only showed positive effects on the percentage of seizures on the 2nd day of observation. LCM decreased free radicals and SOD activity and the dose of 40 mg/kg were able to increase CAT activity. LCM 30 and 40 mg/kg improved the enzymatic mitochondrial activity of the complex I-III and LCM 30 mg/kg improved the activity of the complex II. In the comet assay, the damage induced by PTZ administration was reduced by LCM 20 and 30 mg/kg. The dose of 20 mg/kg increased COX-2 expression while the highest dose used, 40 mg/kg, was able to reduce this expression when compared to the group treated with LCM 20 mg/kg. Although LCM did not produce the antiepileptogenic effect in vivo, it showed the neuroprotective effect against oxidative stress, bioenergetic dysfunction, and DNA damage induced by the repeated PTZ administration.


Subject(s)
Kindling, Neurologic/drug effects , Lacosamide/pharmacology , Neuroprotective Agents/pharmacology , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Male , Mice , Mice, Inbred Strains , Pentylenetetrazole
3.
Med Mycol ; 57(2): 260-263, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-29669009

ABSTRACT

Chromoblastomycosis (CBM) is a chronic cutaneous and subcutaneous infection caused by melanized fungal species. We quantified the extractable melanin of 77 strains of CBM agents distributed within five genera. Moreover, resistance to oxidative stress was evaluated in strains exposed or not to the melanin inhibitor tricyclazole. The median percentage of melanin mass extracted from dry fungal mass varied from 0.69 (Rhinocladiella similis) to 3.81 (Phialophora americana). Inhibition of melanin synthesis decreased survival rates to hydrogen peroxide. Together, these data highlight the importance of melanin in CBM agents.


Subject(s)
Ascomycota/chemistry , Ascomycota/physiology , Chromoblastomycosis/microbiology , Melanins/analysis , Oxidative Stress , Antifungal Agents/pharmacology , Ascomycota/drug effects , Ascomycota/isolation & purification , Humans , Hydrogen Peroxide/pharmacology , Melanins/biosynthesis , Microbial Viability/drug effects , Oxidative Stress/drug effects , Phialophora/chemistry , Phialophora/drug effects , Phialophora/isolation & purification , Phialophora/physiology , Species Specificity , Spores, Fungal/physiology , Thiazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...