Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 42(19): 3749-3752, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28957118

ABSTRACT

A silicon-on-insulator microring with three superimposed gratings is proposed and characterized as a device enabling 3×3 optical switching based on orbital angular momentum and wavelength as switching domains. Measurements show penalties with respect to the back-to-back of <1 dB at a bit error rate of 10-9 for OOK traffic up to 20 Gbaud. Different switch configuration cases are implemented, with measured power penalty variations of less than 0.5 dB at bit error rates of 10-9. An analysis is also carried out to highlight the dependence of the number of switch ports on the design parameters of the multigrating microring.

2.
Opt Lett ; 39(7): 1733-6, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24686591

ABSTRACT

We propose and demonstrate a technique for the generation of an optical comb with tunable line spacing in a periodically poled lithium niobate (PPLN) waveguide. The technique is implemented with four input continuous waves (CWs), which generate a 19-line comb tuned to the spacing of 25 and 20 GHz. We show that each additional CW switched on out of the quasi phase-matching band at the PPLN waveguide input generates the growth of six new lines. The performance of the comb is tested modulating the lines with a 40 Gb/s differential quadrature phase shift keying data, demonstrating error-free operation. Nonuniform spacing of the input seed CWs improves the efficiency of the line generation process.

3.
Nature ; 507(7492): 341-5, 2014 Mar 20.
Article in English | MEDLINE | ID: mdl-24646997

ABSTRACT

The next generation of radar (radio detection and ranging) systems needs to be based on software-defined radio to adapt to variable environments, with higher carrier frequencies for smaller antennas and broadened bandwidth for increased resolution. Today's digital microwave components (synthesizers and analogue-to-digital converters) suffer from limited bandwidth with high noise at increasing frequencies, so that fully digital radar systems can work up to only a few gigahertz, and noisy analogue up- and downconversions are necessary for higher frequencies. In contrast, photonics provide high precision and ultrawide bandwidth, allowing both the flexible generation of extremely stable radio-frequency signals with arbitrary waveforms up to millimetre waves, and the detection of such signals and their precise direct digitization without downconversion. Until now, the photonics-based generation and detection of radio-frequency signals have been studied separately and have not been tested in a radar system. Here we present the development and the field trial results of a fully photonics-based coherent radar demonstrator carried out within the project PHODIR. The proposed architecture exploits a single pulsed laser for generating tunable radar signals and receiving their echoes, avoiding radio-frequency up- and downconversion and guaranteeing both the software-defined approach and high resolution. Its performance exceeds state-of-the-art electronics at carrier frequencies above two gigahertz, and the detection of non-cooperating aeroplanes confirms the effectiveness and expected precision of the system.

4.
Opt Lett ; 38(19): 3870-3, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-24081074

ABSTRACT

We propose and characterize a simple, integrable, and wavelength-preserving scheme able to groom a 40 Gbps (D)QPSK signal with a 20 Gbps OOK one into a 20 Gbaud (60 Gbps) 8-APSK signal. The proposed all-optical scheme is based on the second-order nonlinear signal-depletion effect in a single periodically poled lithium niobate (PPLN) waveguide. Performance of the device, characterized by means of BER measurements, attests error-free operation and a power penalty below 4.1 dB.

5.
Opt Lett ; 37(18): 3831-3, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-23041874

ABSTRACT

A colorless all-optical scheme performing the subtraction and addition of phases between phase-shift keying (PSK) signals exploiting cascaded sum and difference frequency generation in a periodically poled lithium niobate waveguide is introduced and experimentally demonstrated. The subtraction of phases of two 40 Gb/s differential quadrature PSK signals has been experimentally tested and performances have been analyzed in terms of bit error rate measurements.

SELECTION OF CITATIONS
SEARCH DETAIL
...