Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Stem Cell ; 25(2): 185-192.e3, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31204177

ABSTRACT

Hematopoietic cell transplantation can correct hematological and immunological disorders by replacing a diseased blood system with a healthy one, but this currently requires depleting a patient's existing hematopoietic system with toxic and non-specific chemotherapy, radiation, or both. Here we report an antibody-based conditioning protocol with reduced toxicity and enhanced specificity for robust hematopoietic stem cell (HSC) transplantation and engraftment in recipient mice. Host pre-treatment with six monoclonal antibodies targeting CD47, T cells, NK cells, and HSCs followed by donor HSC transplantation enabled stable hematopoietic system reconstitution in recipients with mismatches at half (haploidentical) or all major histocompatibility complex (MHC) genes. This approach allowed tolerance to heart tissue from HSC donor strains in haploidentical recipients, showing potential applications for solid organ transplantation without immune suppression. Fully mismatched chimeric mice developed antibody responses to nominal antigens, showing preserved functional immunity. These findings suggest approaches for transplanting immunologically mismatched HSCs and solid organs with limited toxicity.


Subject(s)
Hematopoietic Stem Cell Transplantation , Myocardium/immunology , Transplantation Conditioning/methods , Allografts/immunology , Animals , Antibodies, Monoclonal , Cells, Cultured , HLA Antigens/immunology , Humans , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Organ Transplantation , Radiation Chimera , Transplantation Tolerance , Transplantation, Haploidentical , Transplantation, Homologous
2.
Science ; 359(6379): 1037-1042, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29496879

ABSTRACT

Interleukin-2 (IL-2) is a cytokine required for effector T cell expansion, survival, and function, especially for engineered T cells in adoptive cell immunotherapy, but its pleiotropy leads to simultaneous stimulation and suppression of immune responses as well as systemic toxicity, limiting its therapeutic use. We engineered IL-2 cytokine-receptor orthogonal (ortho) pairs that interact with one another, transmitting native IL-2 signals, but do not interact with their natural cytokine and receptor counterparts. Introduction of orthoIL-2Rß into T cells enabled the selective cellular targeting of orthoIL-2 to engineered CD4+ and CD8+ T cells in vitro and in vivo, with limited off-target effects and negligible toxicity. OrthoIL-2 pairs were efficacious in a preclinical mouse cancer model of adoptive cell therapy and may therefore represent a synthetic approach to achieving selective potentiation of engineered cells.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Engineering/methods , Immunotherapy, Adoptive/methods , Neoplasms/therapy , Receptors, Interleukin-2/immunology , Animals , HEK293 Cells , Humans , Melanoma, Experimental , Mice , Receptors, Interleukin-2/genetics
3.
Sci Transl Med ; 8(351): 351ra105, 2016 08 10.
Article in English | MEDLINE | ID: mdl-27510901

ABSTRACT

Hematopoietic stem cell (HSC) transplantation can cure diverse diseases of the blood system, including hematologic malignancies, anemias, and autoimmune disorders. However, patients must undergo toxic conditioning regimens that use chemotherapy and/or radiation to eliminate host HSCs and enable donor HSC engraftment. Previous studies have shown that anti-c-Kit monoclonal antibodies deplete HSCs from bone marrow niches, allowing donor HSC engraftment in immunodeficient mice. We show that host HSC clearance is dependent on Fc-mediated antibody effector functions, and enhancing effector activity through blockade of CD47, a myeloid-specific immune checkpoint, extends anti-c-Kit conditioning to fully immunocompetent mice. The combined treatment leads to elimination of >99% of host HSCs and robust multilineage blood reconstitution after HSC transplantation. This targeted conditioning regimen that uses only biologic agents has the potential to transform the practice of HSC transplantation and enable its use in a wider spectrum of patients.


Subject(s)
Hematopoietic Stem Cell Transplantation/methods , Immunotherapy/methods , Animals , CD47 Antigen/antagonists & inhibitors , CD47 Antigen/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Erythrocytes/metabolism , Flow Cytometry , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/physiology , Humans , Mice , Mice, Mutant Strains , Receptors, Fc/genetics , Receptors, Fc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...