Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Physiol ; 591(4): 1001-15, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23165767

ABSTRACT

The chloride channel CLC-3 is expressed in the brain on synaptic vesicles and postsynaptic membranes. Although CLC-3 is broadly expressed throughout the brain, the CLC-3 knockout mouse shows complete, selective postnatal neurodegeneration of the hippocampus, suggesting a crucial role for the channel in maintaining normal brain function. CLC-3 channels are functionally linked to NMDA receptors in the hippocampus; NMDA receptor-dependent Ca(2+) entry, activation of Ca(2+)/calmodulin kinase II and subsequent gating of CLC-3 link the channels via a Ca(2+)-mediated feedback loop. We demonstrate that loss of CLC-3 at mature synapses increases long-term potentiation from 135 ± 4% in the wild-type slice preparation to 154 ± 7% above baseline (P < 0.001) in the knockout; therefore, the contribution of CLC-3 is to reduce synaptic potentiation by ∼40%. Using a decoy peptide representing the Ca(2+)/calmodulin kinase II phosphorylation site on CLC-3, we show that phosphorylation of CLC-3 is required for its regulatory function in long-term potentiation. CLC-3 is also expressed on synaptic vesicles; however, our data suggest functionally separable pre- and postsynaptic roles. Thus, CLC-3 confers Cl(-) sensitivity to excitatory synapses, controls the magnitude of long-term potentiation and may provide a protective limit on Ca(2+) influx.


Subject(s)
CA1 Region, Hippocampal/physiology , Chloride Channels/physiology , Long-Term Potentiation/physiology , Synapses/physiology , Animals , Calcium/physiology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/physiology , Mice , Mice, Knockout
2.
Cell Metab ; 12(4): 310, 2010 Oct 06.
Article in English | MEDLINE | ID: mdl-30029307
SELECTION OF CITATIONS
SEARCH DETAIL
...