Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (136)2018 06 02.
Article in English | MEDLINE | ID: mdl-29912183

ABSTRACT

After animals are euthanized, their tissues begin to die. Turtles offer an advantage because of a longer survival time of their tissues, especially when compared to warm-blooded vertebrates. Because of this, in vitro experiments in turtles can be performed for extended periods of time to investigate the neural signals and control of their target actions. Using an isolated head preparation, we measured the kinematics of eye movements in turtles, and their modulation by electrical signals carried by cranial nerves. After the brain was removed from the skull, leaving the cranial nerves intact, the dissected head was placed in a gimbal to calibrate eye movements. Glass electrodes were attached to cranial nerves (oculomotor, trochlear, and abducens) and stimulated with currents to evoke eye movements. We monitored eye movements with an infrared video tracking system and quantified rotations of the eyes. Current pulses with a range of amplitudes, frequencies, and train durations were used to observe effects on responses. Because the preparation is separated from the brain, the efferent pathway going to muscle targets can be examined in isolation to investigate neural signaling in the absence of centrally processed sensory information.


Subject(s)
Cranial Nerves/physiology , Electric Stimulation/methods , Eye Movements/physiology , Vision, Ocular/physiology , Animals , Biomechanical Phenomena , Turtles
2.
J Undergrad Neurosci Educ ; 14(1): A29-38, 2015.
Article in English | MEDLINE | ID: mdl-26557793

ABSTRACT

Few laboratory exercises have been developed using the crayfish as a model for teaching how neural processing is done by sensory organs that detect light stimuli. This article describes the dissection procedures and methods for conducting extracellular recording from light responses of both the optic nerve fibers found in the animal's eyestalk and from the caudal photoreceptor located in the ventral nerve cord. Instruction for ADInstruments' data acquisition system is also featured for the data collection and analysis of responses. The comparison provides students a unique view on how spike activities measured from neurons code image-forming and non-image-forming processes. Results from the exercise show longer latency and lower frequency of firing by the caudal photoreceptor compared to optic nerve fibers to demonstrate evidence of different functions. After students learn the dissection, recording procedure, and the functional anatomy, they can develop their own experiments to learn more about the photoreceptive mechanisms and the sensory integration of modalities by these light-responsive interneurons.

SELECTION OF CITATIONS
SEARCH DETAIL
...