Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Type of study
Publication year range
1.
ACS Appl Mater Interfaces ; 15(27): 32783-32791, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37366002

ABSTRACT

A cost-effective and environmentally friendly approach is proposed for producing N- and S-codoped multicolor-emission carbon dots (N- and S-codoped MCDs) at a mild reaction temperature (150 °C) and relatively short time (3 h). In this process, adenine sulfate acts as a novel precursor and doping agent, effectively reacting with other reagents such as citric acid, para-aminosalicylic acid, and ortho-phenylenediamine, even during solvent-free pyrolysis. The distinctive structures of reagents lead to the increased amount of graphitic nitrogen and sulfur doping in the N- and S-codoped MCDs. Notably, the obtained N- and S-codoped MCDs exhibit considerable fluorescence intensities, and their emission color can be adjusted from blue to yellow. The observed tunable photoluminescence can be attributed to variations in the surface state and the amount of N and S contents. Furthermore, due to the favorable optical properties, good water solubility and biocompatibility, and low cytotoxicity, these N- and S-codoped MCDs, especially green carbon dots, are successfully applied as fluorescent probes for bioimaging. The affordable and environmentally friendly synthesis method employed to create N- and S-codoped MCDs, combined with their remarkable optical properties, offers a promising avenue for their use in various fields, particularly in biomedical applications.


Subject(s)
Carbon , Quantum Dots , Carbon/chemistry , Nitrogen/chemistry , Sulfates , Quantum Dots/chemistry , Sulfur/chemistry
2.
ACS Nano ; 17(3): 2629-2638, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36688595

ABSTRACT

Vertical type II van der Waals heterobilayers of transition metal dichalcogenides (TMDs) have attracted wide attention due to their distinctive features mostly arising from the emergence of intriguing electronic structures that include moiré-related phenomena. Owing to strong spin-orbit coupling under a noncentrosymmetric environment, TMD heterobilayers host nonequivalent +K and -K valleys of contrasting Berry curvatures, which can be optically controlled by the helicity of optical excitation. The corresponding valley selection rules are well established by not only intralayer excitons but also interlayer excitons. Quite intriguingly, here, we experimentally demonstrate that unusual valley switching can be achieved using the lowest-lying intralayer excitons in H-type heterobilayer WS2/MoS2 prepared by one-step growth. This TMD combination provides an ideal case for interlayer coupling with an almost perfect lattice match, thereby also in the momentum space between +K and -K valleys in the H-type heterostructure. The underlying valley-switching mechanism can be understood by bright-to-dark conversion of initially created electrons in the valley of WS2, followed by interlayer charge transfer to the opposite valley in MoS2. Our suggested model is also confirmed by the absence of valley switching when the lowest-lying excitons in MoS2 are directly generated in the heterobilayer. In contrast to the H-type case, we show that no valley switching is observed from R-type heterobilayers prepared by the same method, where interlayer charge transfer does not occur between the opposite valleys. We compare the case with the series of valley polarization data from other heterobilayer combinations obtained under different excitation energies and temperatures. Our valley switching mechanism can be utilized for valley manipulation by controlling the excitation photon energy together with the photon helicity in valleytronic devices derived from H-type TMD heterobilayers.

3.
ACS Appl Mater Interfaces ; 13(48): 57588-57596, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34797625

ABSTRACT

Noncentrosymmetric transition-metal dichalcogenides, particularly their 3R polymorphs, provide a robust setting for valleytronics. Here, we report on the selective growth of monolayers and bilayers of MoS2, which were acquired from two closely but differently oriented substrates in a chemical vapor deposition reactor. It turns out that as-grown bilayers are predominantly 3R-type, not more common 2H-type, as verified by microscopic and spectroscopic characterization. As expected, the 3R bilayer showed a significantly higher valley polarization compared with the centrosymmetric 2H bilayer, which undergoes efficient interlayer scattering across contrasting valleys because of their vertical alignment of the K and K' points in momentum space. Interestingly, the 3R bilayer showed even higher valley polarization compared with the monolayer counterpart. Moreover, the 3R bilayer reasonably maintained its valley efficiency over a very wide range of excitation power density from ∼0.16 kW/cm2 to ∼0.16 MW/cm2 at both low and room temperatures. These observations are rather surprising because valley dephasing could be more efficient in the bilayer via both interlayer and intralayer scatterings, whereas only intralayer scattering is allowed in the monolayer. The improved valley polarization of the 3R bilayer can be attributed to its indirect-gap nature, where valley-polarized excitons can relax into the valley-insensitive band edge, which otherwise scatter into the contrasting valley to effectively cancel out the initial valley polarization. Our results provide a facile route for the growth of 3R-MoS2 bilayers that could be utilized as a platform for advancing valleytronics.

4.
ACS Appl Mater Interfaces ; 13(13): 15783-15790, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33769783

ABSTRACT

The spin Seebeck effect (SSE) has attracted renewed interest as a promising phenomenon for energy harvesting systems. A noteworthy effort has been devoted to improving the SSE voltage by inserting ultrathin magnetic layers including Fe70Cu30 interlayers in Pt/Y3Fe5O12 (Pt/YIG) systems with increased spin-mixing conductance at the interfaces. Nevertheless, the responsible underlying physics associated with the role of the interlayer in Pt/YIG systems in the SSE is still unknown. In this paper, we demonstrate that with a monolayer tungsten diselenide (ML WSe2) interlayer in the Pt/YIG bilayer system, the longitudinal SSE (LSSE) voltage is significantly increased by the increased spin accumulation in the Pt layer; the spin fluctuation in ML WSe2 amplifies the spin current transmission because the in-plane-aligned WSe2 spins are coupled to thermally pumped spins under nonequilibrium magnetization conditions in the LSSE configuration at room temperature. The thermopower (VLSSE/ΔT) improves by 323% with respect to the value of the reference Pt/YIG bilayer sample in the LSSE at room temperature. In addition, the induced ferromagnetic properties of the ML WSe2 flakes on YIG increase the LSSE voltage (VLSSE) of the sample; the ferromagnetic properties are a result of the improved magnetic moment density in the ML WSe2 flakes and their two-dimensional (2D) ML nature in the LSSE under nonequilibrium magnetization conditions. The results can extend the application range of the materials in energy harvesting and provide important information on the physics of the LSSE with a transition metal dichalcogenide intermediate layer in spin transport.

5.
ACS Nano ; 14(4): 4366-4373, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32212675

ABSTRACT

Noncentrosymmetric monolayers (MLs) of transition metal dichalcogenides (TMDCs) and their 3R-type vertical stacks provide an ideal platform for studying atomic-scale nonlinear light-matter interaction in terms of second harmonic generation (SHG). Unlike the case of MLs, SHG from artificial stacks can be nontrivially affected by interlayer coupling and band offset between the constituent MLs, where the latter occurs for band-gap-engineered vertical heterostructures (VHs). In order to study these effects, we produced different sets of 3R-type homobilayers (homo-BLs) and heterobilayers (hetero-BLs) composed of MoS2 and its ternary alloy MoS2(1-x)Se2x. We first investigated the impact of interlayer coupling on the SHG response across the A- and B-exciton resonances in the MoS2 homo-BLs. The coupling strength was varied by preparing (i) decoupled BLs (SiO2 intercalated), (ii) weakly coupled BLs (dry transferred), and (iii) strongly coupled BLs (postannealed) and monitored by photoluminescence, Raman, and reflectance difference spectroscopy, and atomic force microscopy. Unlike the decoupled BL, SHG in the coupled BLs cannot be explained by the simple square law in thickness due to coupling-induced band modification. The impact of exciton-resonance offset on SHG was also investigated in the hetero-BLs by controlling the Se concentration in MoS2xSe2(x-1). Although these VHs can significantly broaden the spectral range for efficient SHG by vertically superposing distinct resonances of the constituent MLs, coherent reinforcement of SHG cannot be achieved basically because of the π/2 phase difference between the on-resonance SHG field in one ML and the off-resonance SHG field in the other ML. Upon postannealing, however, the overlapping resonance regime exhibited unexpectedly high SHG enhancement. This may arise from the formation of the strong resonance when the VHs approach ideal 3R-type hetero-BLs. Our approach may be utilized for fully exploiting the TMDC VHs for highly efficient broadband SHG applications.

6.
Adv Sci (Weinh) ; 7(4): 1900757, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32099750

ABSTRACT

The atomic or molecular assembly on 2D materials through the relatively weak van der Waals interaction is quite different from the conventional heteroepitaxy and may result in unique growth behaviors. Here, it is shown that straight 1D cyanide chains display universal epitaxy on hexagonal 2D materials. A universal oriented assembly of cyanide crystals (AgCN, AuCN, and Cu0.5Au0.5CN) is observed, where the chains are aligned along the three zigzag lattice directions of various 2D hexagonal crystals (graphene, h-BN, WS2, MoS2, WSe2, MoSe2, and MoTe2). The potential energy landscape of the hexagonal lattice induces this preferred alignment of 1D chains along the zigzag lattice directions, regardless of the lattice parameter and surface elements as demonstrated by first-principles calculations and parameterized surface potential calculations. Furthermore, the oriented microwires can serve as crystal orientation markers, and stacking-angle-controlled vertical 2D heterostructures are successfully fabricated by using them as markers. The oriented van der Waals epitaxy can be generalized to any hexagonal 2D crystals and will serve as a unique growth process to form crystals with orientations along the zigzag directions by epitaxy.

7.
ACS Omega ; 4(25): 21509-21515, 2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31867547

ABSTRACT

Theoretically, the edges of a MoS2 flake and S-vacancy within the lattice have nearly zero Gibbs free energy for hydrogen adsorption, which is essentially correlated to the exchange currents in hydrogen evolution reaction (HER). However, MoS2 possesses insufficient active sites (edges and S-vacancies) in pristine form. Interestingly, active sites can be effectively engineered within the continuous MoS2 sheets by treating it with plasma in a controlled manner. Here, we employed N2 plasma on a large-area continuous-monolayer MoS2 synthesized via metal-organic chemical vapor deposition to acquire maximum active sites that are indeed required for an efficient HER performance. The MoS2 samples with maximum active sites were acquired by optimizing the plasma exposure time. The newly induced edges and S-vacancies were directly verified by high-resolution transmission electron microscopy. The 20 min treated MoS2 sample showed maximum active sites and thereby maximum HER activity, onset overpotential of ∼-210 mV vs reversible hydrogen electrode (RHE), and Tafel slope of ∼89 mV/dec. Clearly, the above results show that this approach can be employed for improving the HER efficiency of large-scale MoS2-based electrocatalysts.

8.
ACS Appl Mater Interfaces ; 10(47): 40824-40830, 2018 Nov 28.
Article in English | MEDLINE | ID: mdl-30387344

ABSTRACT

Conformal growth of atomic-thick semiconductor layers on patterned substrates can boost up the performance of electronic and optoelectronic devices remarkably. However, conformal growth is a very challenging technological task, since the control of the growth processes requires utmost precision. Herein, we report on conformal growth and characterization of monolayer MoS2 on planar, microrugged, and nanorugged SiO2/Si substrates via metal-organic chemical vapor deposition. The continuous and conformal nature of monolayer MoS2 on the rugged surface was verified by high-resolution transmission electron microscopy. Strain effects were examined by photoluminescence (PL) and Raman spectroscopy. Interestingly, the photoresponsivity (∼254.5 mA/W) of as-grown MoS2 on the nanorugged substrate was 59 times larger than that of the planar sample (4.3 mA/W) under a small applied bias of 0.1 V. This value is record high when compared with all previous MoS2-based photocurrent generation under low or zero bias. Such enhancement in the photoresponsivity arises from a large active area for light-matter interaction and local strain for PL quenching, wherein the latter effect is the key factor and unique in the conformally grown monolayer on the nanorugged surface.

9.
ACS Nano ; 11(9): 8822-8829, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28825796

ABSTRACT

The covalently bonded in-plane heterostructure (HS) of monolayer transition-metal dichalcogenides (TMDCs) possesses huge potential for high-speed electronic devices in terms of valleytronics. In this study, high-quality monolayer MoSe2-WSe2 lateral HSs are grown by pulsed-laser-deposition-assisted selenization method. The sharp interface of the lateral HS is verified by morphological and optical characterizations. Intriguingly, photoluminescence spectra acquired from the interface show rather clear signatures of pristine MoSe2 and WSe2 with no intermediate energy peak related to intralayer excitonic matter or formation of MoxW(1-x)Se2 alloys, thereby confirming the sharp interface. Furthermore, the discrete nature of laterally attached TMDC monolayers, each with doubly degenerated but nonequivalent energy valleys marked by (KM, K'M) for MoSe2 and (KW, K'W) for WSe2 in k space, allows simultaneous control of the four valleys within the excitation area without any crosstalk effect over the interface. As an example, KM and KW valleys or K'M and K'W valleys are simultaneously polarized by controlling the helicity of circularly polarized optical pumping, where the maximum degree of polarization is achieved at their respective band edges. The current work provides the growth mechanism of laterally sharp HSs and highlights their potential use in valleytronics.

10.
J Nanosci Nanotechnol ; 15(10): 8133-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26726475

ABSTRACT

Monolayer molybdenum disulfide (MoS2) is an emerging two-dimensional material beyond graphene, which could potentially be applicable to lightweight, flexible optoelectronic device. In this study, we have demonstrated a planar metal-semiconductor-metal (MSM) photodetectors based on large area monolayer MoS2. The monolayer MoS2 was grown via chemical vapor deposition method, showing excellent structural and optical properties. The current-voltage measurement was characterized at various monochromatic lights in visible spectrum. The device exhibited good responsivity ~7.7 mA/W for wavelength of ~470 nm, which is relatively comparative to mechanical exfoliated monolayer MoS2 based photodetectors. Additionally, the photoresponse measurement showed that the rise/fall time was about 1/0.7 s.

SELECTION OF CITATIONS
SEARCH DETAIL
...