Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 14(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38201414

ABSTRACT

Ultra-wide-field fundus imaging (UFI) provides comprehensive visualization of crucial eye components, including the optic disk, fovea, and macula. This in-depth view facilitates doctors in accurately diagnosing diseases and recommending suitable treatments. This study investigated the application of various deep learning models for detecting eye diseases using UFI. We developed an automated system that processes and enhances a dataset of 4697 images. Our approach involves brightness and contrast enhancement, followed by applying feature extraction, data augmentation and image classification, integrated with convolutional neural networks. These networks utilize layer-wise feature extraction and transfer learning from pre-trained models to accurately represent and analyze medical images. Among the five evaluated models, including ResNet152, Vision Transformer, InceptionResNetV2, RegNet and ConVNext, ResNet152 is the most effective, achieving a testing area under the curve (AUC) score of 96.47% (with a 95% confidence interval (CI) of 0.931-0.974). Additionally, the paper presents visualizations of the model's predictions, including confidence scores and heatmaps that highlight the model's focal points-particularly where lesions due to damage are evident. By streamlining the diagnosis process and providing intricate prediction details without human intervention, our system serves as a pivotal tool for ophthalmologists. This research underscores the compatibility and potential of utilizing ultra-wide-field images in conjunction with deep learning.

2.
Bioengineering (Basel) ; 10(11)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-38002373

ABSTRACT

In recent decades, medical imaging techniques have revolutionized the field of disease diagnosis, enabling healthcare professionals to noninvasively observe the internal structures of the human body. Among these techniques, optical coherence tomography (OCT) has emerged as a powerful and versatile tool that allows high-resolution, non-invasive, and real-time imaging of biological tissues. Deep learning algorithms have been successfully employed to detect and classify various retinal diseases in OCT images, enabling early diagnosis and treatment planning. However, existing deep learning algorithms are primarily designed for single-disease diagnosis, which limits their practical application in clinical settings where OCT images often contain symptoms of multiple diseases. In this paper, we propose an effective approach for multi-disease diagnosis in OCT images using a multi-scale learning (MSL) method and a sparse residual network (SRN). Specifically, the MSL method extracts and fuses useful features from images of different sizes to enhance the discriminative capability of a classifier and make the disease predictions interpretable. The SRN is a minimal residual network, where convolutional layers with large kernel sizes are replaced with multiple convolutional layers that have smaller kernel sizes, thereby reducing model complexity while achieving a performance similar to that of existing convolutional neural networks. The proposed multi-scale sparse residual network significantly outperforms existing methods, exhibiting 97.40% accuracy, 95.38% sensitivity, and 98.25% specificity. Experimental results show the potential of our method to improve explainable diagnosis systems for various eye diseases via visual discrimination.

3.
Bioengineering (Basel) ; 10(9)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37760150

ABSTRACT

Ultra-widefield fundus image (UFI) has become a crucial tool for ophthalmologists in diagnosing ocular diseases because of its ability to capture a wide field of the retina. Nevertheless, detecting and classifying multiple diseases within this imaging modality continues to pose a significant challenge for ophthalmologists. An automated disease classification system for UFI can support ophthalmologists in making faster and more precise diagnoses. However, existing works for UFI classification often focus on a single disease or assume each image only contains one disease when tackling multi-disease issues. Furthermore, the distinctive characteristics of each disease are typically not utilized to improve the performance of the classification systems. To address these limitations, we propose a novel approach that leverages disease-specific regions of interest for the multi-label classification of UFI. Our method uses three regions, including the optic disc area, the macula area, and the entire UFI, which serve as the most informative regions for diagnosing one or multiple ocular diseases. Experimental results on a dataset comprising 5930 UFIs with six common ocular diseases showcase that our proposed approach attains exceptional performance, with the area under the receiver operating characteristic curve scores for each class spanning from 95.07% to 99.14%. These results not only surpass existing state-of-the-art methods but also exhibit significant enhancements, with improvements of up to 5.29%. These results demonstrate the potential of our method to provide ophthalmologists with valuable information for early and accurate diagnosis of ocular diseases, ultimately leading to improved patient outcomes.

4.
Bioengineering (Basel) ; 10(9)2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37760191

ABSTRACT

Self-supervised learning has been successful in computer vision, and its application to medical imaging has shown great promise. This study proposes a novel self-supervised learning method for medical image classification, specifically targeting ultra-wide-field fundus images (UFI). The proposed method utilizes contrastive learning to pre-train a deep learning model and then fine-tune it with a small set of labeled images. This approach reduces the reliance on labeled data, which is often limited and costly to obtain, and has the potential to improve disease detection in UFI. This method employs two contrastive learning techniques, namely bi-lateral contrastive learning and multi-modality pre-training, to form positive pairs using the data correlation. Bi-lateral learning fuses multiple views of the same patient's images, and multi-modality pre-training leverages the complementary information between UFI and conventional fundus images (CFI) to form positive pairs. The results show that the proposed contrastive learning method achieves state-of-the-art performance with an area under the receiver operating characteristic curve (AUC) score of 86.96, outperforming other approaches. The findings suggest that self-supervised learning is a promising direction for medical image analysis, with potential applications in various clinical settings.

5.
Sensors (Basel) ; 19(20)2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31627360

ABSTRACT

Many time-sensitive applications require data to be aggregated from wireless sensor networks with minimum latency. However, the minimum latency aggregation scheduling problem has not been optimally solved due to its NP-hardness. Most existing ideas rely on local information (e.g., node degree, number of children) to organize the schedule order, hence results in solutions that might be far from optimal. In this work, we propose RADAS: a delay-aware Reverse Approach for Data Aggregation Scheduling that determines the transmissions sequence of sensors in a reverse order. Specifically, RADAS iteratively finds the transmissions starting from the last time slot, in which the last sender delivers data to the sink, down to the first time slot, when the data aggregation begins. In each time slot, RADAS intends to maximize the number of concurrent transmissions, while giving higher priority to the sender with potentially higher aggregation delay. Scheduling such high-priority sender first would benefit the maximum selections in subsequent time slots and eventually shorten the schedule length. Simulation results show that our proposed algorithm dominates the existing state-of-the-art schemes, especially in large and dense networks, and offers up to 30% delay reduction.

SELECTION OF CITATIONS
SEARCH DETAIL
...