Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Pathogens ; 13(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38921740

ABSTRACT

Verticillium wilt is a soil-borne disease caused by distinct vegetative compatibility groups (VCG) of the fungus Verticillium dahliae. Defoliating (VCG 1A) and non-defoliating (VCG 2A) pathotypes of V. dahliae have contributed to yield losses of cotton production in Australia. To study the virulence and the infection process of V. dahliae on cotton, two isolates, one representing each VCG, have been transformed with fluorescent protein genes. The transformants maintained their ability to infect the host, and both strains were observed to move through the plant vasculature to induce wilt symptoms. Furthermore, virulence testing suggests that the cotton V. dahliae strains can endophytically colonise common weed plant species found in the Australian landscape, and that is contrasted by their ability to infect and colonise native tobacco plants. The fluorescently labelled strains of V. dahliae not only allowed us to gain a thorough understanding of the infection process but also provided a method to rapidly identify recovered isolates from host colonisation studies.

2.
Pathogens ; 11(12)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36558871

ABSTRACT

Cotton (Gossypium hirsutum) is a billion-dollar crop in regional New South Wales (NSW) and Queensland, Australia. Fusarium wilt (FW) caused by Fusarium oxysporum f. sp. vasinfectum (Fov) is an economically important disease. Initial disease losses of up to 90% when the disease was first detected resulted in fields being taken out of cotton production. The disease is now well-managed due to the adoption of highly resistant varieties. However, annual disease surveys recently revealed that the disease dynamic has changed in the past few seasons. With relatively mild and wet weather conditions during the 2021/22 growing season, FW was detected in eight surveyed valleys in NSW and Queensland, with the disease incidence as high as 44.5% and 98.5% in individual fields in early and late seasons, respectively. Fov is genetically distinct and evolved from local Fusarium oxysporum strains. Additionally, the pathogen was reported to evolve rapidly under continuous cotton cropping pressure. However, our knowledge of the genetic composition of the prevailing population is limited. Sequences of the translation elongation factor alpha 1 (TEF1) revealed that 94% of Fusarium isolates recovered from FW-infected cotton were clustered together with known Australian Fov and relatively distant related to overseas Fov races. All these isolates, except for nine, were further confirmed positive with a specific marker based on the Secreted in Xylem 6 (SIX6) effector gene. Vegetative compatibility group (VCG) analyses of 166 arbitrarily selected isolates revealed a predominance of VCG01111. There was only one detection of VCG01112 in the Border Rivers valley where it was first described. In this study, the exotic Californian Fov race 4 strain was not detected using a specific marker based on the unique Tfo1 insertion in the phosphate (PHO) gene. This study indicated that the prevalence and abundance of Fov across NSW and Queensland in the past five seasons was probably independent of its genetic diversity.

3.
Plants (Basel) ; 9(6)2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32549220

ABSTRACT

Verticillium wilt (VW) is a major constraint to cotton production in Australia and worldwide. The disease is caused by a soilborne fungus, Verticillium dahliae, a highly virulent pathogen on cotton. Commonly, V. dahliae is designated into two pathotypes: defoliating (D) and non-defoliating (ND), based on induced symptoms. In the previous two survey seasons between 2017 and 2019, stems with suspected VW were sampled for the confirmation of presence and distribution of D and ND pathotypes across New South Wales (NSW), Australia. A total of 151 and 84 VW-suspected stems sampled from the 2017/18 and 2018/19 seasons, respectively, were subjected to pathogen isolation. Of these, 94 and 57 stems were positive for V. dahliae; and 18 and 20 stems sampled respectively from the two seasons yielded the D pathotype isolates. Two stems from the 2017/18 season and one stem from 2018/19 season yielded both D and ND pathotype isolates. We also successfully demonstrated the co-infection of both pathotypes in pot trials, which was driven predominantly by either of the pathotypes, and appeared independent on vegetative growth, fecundity and spore germination traits. Our study is the first report of the natural co-occurrence of both D and ND pathotypes in same field-grown cotton plants in NSW, to which a challenge to the disease management will be discussed.

4.
Plant Dis ; 103(8): 1865-1875, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31161921

ABSTRACT

Black root rot of avocado is a severe disease of nursery trees and young orchard transplants, causing tree death within a year after planting. In Australia, key pathogens include species complexes Calonectria ilicicola and Dactylonectria macrodidyma; however, several other Dactylonectria species also cause the disease. Rapid detection of these pathogens in planta is important to speed up implementation of disease management and reduce loss. The purpose of this study was to develop three loop-mediated isothermal amplification (LAMP) diagnostic assays to rapidly identify species within the C. ilicicola and D. macrodidyma complexes and species in the Dactylonectria genus in avocado roots. Primers were designed from ß-tubulin sequence data of C. ilicicola and from histone H3 of D. macrodidyma and the Dactylonectria genus. The LAMP primers were tested for specificity and sensitivity with 82 fungal isolates, which included the target species complexes C. ilicicola and D. macrodidyma; species within the target Dactylonectria genus viz. D. macrodidyma, D. anthuriicola, D. novozelandica, D. pauciseptata, and D. vitis; and isolates of nontarget species, including Calonectria sp., Cylindrocladiella sp., Gliocladiopsis forsbergii, G. peggii, G. whileyi, Ilyonectria sp., Mariannaea sp., Fusarium sp., and Phytophthora cinnamomi. The species-specific LAMP assays were sensitive and specific at DNA concentrations of 1 pg/µl for C. ilicicola and 0.01 ng/µl for D. macrodidyma, whereas the Dactylonectria genus-wide assay was sensitive to 0.1 ng/µl. Detection of C. ilicicola occurred within 10 to 15 or 15 to 30 min when the template was pure DNA or crude extracts obtained from suspending fungal cultures in sterile water, respectively. Detection of D. macrodidyma was between 12 to 29 min with pure DNA and 16 to 30 min with crude extracts. Dactylonectria spp. were detected within 6 to 25 min with pure DNA and 7 to 23 min with crude extracts. The specificity of the assays was found to be dependent on time and isothermal amplification temperature, with optimal specificity occurring in reactions of <30 min and at temperatures of 67°C for C. ilicicola and D. macrodidyma assays and 69°C for Dactylonectria genus-wide assays. The assays were modified to accommodate a DNA extraction step and use of avocado roots as DNA templates. Detection in avocado roots ranged between 12 to 25 min for C. ilicicola, 12 to 26 min for D. macrodidyma, and 14 to 30 min for species in the Dactylonectria genus. The LAMP assays are applicable across multiple agricultural industries, because C. ilicicola, D. macrodidyma, and Dactylonectria spp. are also important pathogens of various crops and ornamental plants.


Subject(s)
Agriculture/methods , Hypocreales , Nucleic Acid Amplification Techniques , Persea , Australia , DNA, Fungal/genetics , Hypocreales/genetics , Persea/microbiology , Plant Diseases/microbiology
5.
Plants (Basel) ; 6(4)2017 Oct 20.
Article in English | MEDLINE | ID: mdl-29053639

ABSTRACT

The effects of silicon (Si) amendment have been studied in several plant/pathogen interactions; however, studies in horticultural tree crops are limited. Effects of amendment with soluble potassium silicate (AgSil®32, approximately 30% available Si), or milled cement building board by-products (Mineral Mulch (MM) or Mineral Dust (MD), containing 5% available Si) were investigated in field and greenhouse trials with avocado. Orchard soil drench applications with potassium silicate improved yield and quality of fruit, but visual health of trees declining from Phytophthora root rot (PRR) was not affected. Orchard spray or trunk injection applications with potassium silicate were ineffective. Amendment of potting mix with MM and MD reduced root necrosis of avocado seedlings after inoculation with Calonectria ilicicola, an aggressive soilborne pathogen causing black root rot. Application of MM to mature orchard trees declining with PRR had a beneficial effect on visual tree health, and Si accumulation in leaves and fruit peel, after only 10 months. Products that deliver available Si consistently for uptake are likely to be most successful in perennial tree crops.

SELECTION OF CITATIONS
SEARCH DETAIL
...