Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Oxid Med Cell Longev ; 2022: 9206039, 2022.
Article in English | MEDLINE | ID: mdl-35186190

ABSTRACT

Diabetes mellitus (DM) is a group of metabolic diseases, and there is an urgent need to develop new therapeutic DM oral drugs with fewer side effects and sound therapeutic efficacy. In this study, a ß cell expansion factor A (BefA) production strain of Escherichia coli (BL21-pet 28C-BefA) was constructed, and the antidiabetes effect of BefA was evaluated using type 1 DM (T1DM) and type 2 DM (T2DM) mice models. The T1DM mice results indicated that BefA significantly reduced blood glucose levels; exerted a protective effect on islet ß cell morphology; downregulated the expressions of TLR-4, p-NFκB/NFκB, and Bax/Bcl-2, and the secretion levels of IL-1ß and TNF-α; increased the expression of PDX-1 protein and insulin secretion in a concentration-dependent manner; and restored the disturbed microbial diversity to normal levels. Similarly with the T1DM mice, BefA obviously increased islet ß cells and reduced the inflammatory reaction and apoptosis in T2DM mice, as well as improved liver lipid metabolism by downregulating the expressions of CEBP-α, ACC, and Fasn; inhibited the synthesis of triglycerides; and induced Cpt-1, Hmgcs2, and Pparα in a concentration-dependent manner. In conclusion, BefA alleviates diabetes via increasing the number of islet ß cells, reducing the inflammatory reaction and apoptosis, improving liver lipid metabolism, and restoring microbial diversity to normal levels, which provides a new strategy for a DM oral drug.


Subject(s)
Bacterial Proteins/administration & dosage , Diabetes Mellitus, Experimental/drug therapy , Insulin-Secreting Cells/drug effects , Administration, Oral , Animals , Male , Mice
2.
Front Cell Infect Microbiol ; 11: 719542, 2021.
Article in English | MEDLINE | ID: mdl-34604109

ABSTRACT

More and more studies have shown that the intestinal microbiota is the main factor in the pathogenesis of type 1 diabetes mellitus (T1DM). Beta cell expansion factor A (BefA) is a protein expressed by intestinal microorganisms. It has been proven to promote the proliferation of ß-cells and has broad application prospects. However, as an intestinal protein, there have not been studies and reports on its application in diabetes and its mechanism of action. In this study, a T1DM model induced by multiple low-dose STZ (MLD-STZ) injections was established, and BefA protein was administered to explore its therapeutic effect in T1DM and the potential mechanism of intestinal microbiota. BefA protein significantly reduced the blood glucose, maintained the body weight, and improved the glucose tolerance of the mice. At the same time, the BefA protein significantly increased the expression of ZO-1, Occludin, and significantly reduced the expression of TLR-4, Myd88, and p-p65/p65. BefA protein significantly reduced the relative expression of pro-inflammatory cytokines IL-1ß, IL-6 and TNF-α. In addition, our high-throughput sequencing shows for the first time that the good hypoglycemic effect of BefA protein is strongly related to the increase in the abundance of the beneficial gut bacteria Lactobacillus, Bifidobacterium and Oscillospria and the decrease in the abundance of the opportunistic pathogen Acinetobacter. Our group used animal models to verify the hypoglycemic effect of BefA protein, and first explored the potential mechanism of intestinal microbiota in BefA protein treatment.


Subject(s)
Diabetes Mellitus, Type 1 , Gastrointestinal Microbiome , Animals , Cell Proliferation , Diabetes Mellitus, Type 1/drug therapy , Mice , Vitamin B 12/analogs & derivatives
3.
Front Oncol ; 11: 704001, 2021.
Article in English | MEDLINE | ID: mdl-34381726

ABSTRACT

Chemoresistance is the primary reason for the poor prognosis of patients with ovarian cancer, and the search for a novel drug treatment or adjuvant chemotherapy drug is an urgent need. The tumor microenvironment plays key role in the incidence and development of tumors. As one of the most important components of the tumor microenvironment, M2 tumor-associated macrophages are closely related to tumor migration, invasion, immunosuppressive phenotype and drug resistance. Many studies have confirmed that triptolide (TPL), one of the principal components of Tripterygium wilfordii, possesses broad-spectrum anti-tumor activity. The aims of this study were to determine whether TPL could inhibit the migration and invasion of A2780/DDP cells in vitro and in vivo by inhibiting the polarization of M2 tumor-associated macrophages (TAMs); to explore the mechanism(s) underlying TPL effects; and to investigate the influence of TPL on murine intestinal symbiotic microbiota. In vitro results showed that M2 macrophage supernatant slightly promoted the proliferation, invasion, and migration of A2780/DDP cells, which was reversed by TPL in a dose-dependent manner. Animal experiments showed that TPL, particularly TPL + cisplatin (DDP), significantly reduced the tumor burden, prolonged the life span of mice by inhibiting M2 macrophage polarization, and downregulated the levels of CD31 and CD206 (CD31 is the vascular marker and CD206 is the macrophage marker), the mechanism of which may be related to the inhibition of the PI3K/Akt/NF-κB signaling pathway. High-throughput sequencing results of the intestinal microbiota in nude mice illustrated that Akkermansia and Clostridium were upregulated by DDP and TPL respective. We also found that Lactobacillus and Akkermansia were downregulated by DDP combined with TPL. Our results highlight the importance of M2 TAMs in Epithelial Ovarian Cancer (EOC) migration ability, invasiveness, and resistance to DDP. We also preliminarily explored the mechanism governing the reversal of the polarization of M2 macrophages by TPL.

4.
Oncol Rep ; 45(5)2021 05.
Article in English | MEDLINE | ID: mdl-33760192

ABSTRACT

Advanced and recurrent ovarian cancer has a poor prognosis and is frequently resistant to numerous therapeutics; thus, safe and effective drugs are needed to combat this disease. Previous studies have demonstrated that triptolide (TPL) exhibits anticancer and sensitization effects against cisplatin (DDP)­resistant ovarian cancer both in vitro and in vivo by inducing apoptosis; however, the involvement of autophagy induced by TPL in resistant ovarian carcinoma remains unclear. In the present study, the results revealed that TPL induced autophagy to facilitate SKOV3/DDP ovarian cancer cell death. The xenograft experiment revealed that the autophagy inhibitor CQ significantly reduced TPL­mediated chemosensitization and tumor growth inhibition. Mechanically, TPL­induced autophagy in SKOV3/DDP cells was associated with the induction of ROS generation and inhibition of the Janus kinase 2 (JAK2)/signal transducer and activator of transcription­3 (STAT3) pathway. The inhibitory effect of TPL on the JAK2/STAT3 pathway could be restored in the presence of the antioxidant NAC. Furthermore, it was further determined that TPL disrupted the interaction between Mcl­1 and Beclin1, which was prevented by the JAK2/STAT3 signaling activator IL­6. Overall, the present results revealed a novel molecular mechanism whereby TPL induced lethal autophagy through the ROS­JAK2/STAT3 signaling cascade in SKOV3/DDP cells. The present study has provided the groundwork for future application of TPL in the treatment of ovarian cancer.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Carcinoma, Ovarian Epithelial/drug therapy , Cisplatin/pharmacology , Diterpenes/pharmacology , Ovarian Neoplasms/drug therapy , Phenanthrenes/pharmacology , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Autophagy/drug effects , Carcinoma, Ovarian Epithelial/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cisplatin/therapeutic use , Diterpenes/therapeutic use , Drug Resistance, Neoplasm/drug effects , Epoxy Compounds/pharmacology , Epoxy Compounds/therapeutic use , Female , Humans , Janus Kinase 2/metabolism , Mice , Ovarian Neoplasms/pathology , Phenanthrenes/therapeutic use , Reactive Oxygen Species/metabolism , STAT3 Transcription Factor/metabolism , Xenograft Model Antitumor Assays
5.
J Cancer ; 12(5): 1386-1397, 2021.
Article in English | MEDLINE | ID: mdl-33531984

ABSTRACT

Background: Epithelial ovarian cancer (EOC) accounts for the most lethal of all gynaecological cancers which is attributed to metastasis, invasiveness and drug resistance. A crucial link has been found between epithelial-mesenchymal transition (EMT) and cancer metastasis and chemo-resistance. Previous studies have confirmed that one of the main components of tripterygium glycosides (GTW)-triptolide (TPL) has anticancer effects. Methods: The purpose of this study is to determine whether GTW could inhibit EMT in A2780/DPP cells in vitro and in vivo, and explore the underlying mechanism. Results: In vitro results showed that GTW inhibited cell proliferation, invasion and migration, and intensified the sensitivity of A2780/DDP cells to cisplatin (DDP). GTW, especially GTW+DDP, significantly inhibited the expression of N-cadherin, integrin-linked kinase (ILK), phospho-protein kinase B/AKT (PKB/p-AKT), phospho-glycogen synthase kinase (p-GSK3ß) and Slug, while it increased E-cadherin levels by inhibiting EMT via the ILK/AKT/GSK3ß/Slug signalling pathway. Animal results indicated that GTW, especially GTW+DDP, significantly reduced tumour burden, prolonged the life span of mice, and down-regulated the levels of tumour markers CA125 and HE4 by regulating EMT through the ILK/AKT/GSK3ß/Slug signalling pathway. Conclusion: Our results highlighted the significance of EMT in EOC metastasis, invasiveness and resistance to DDP and investigated the potential role of GTW as an adjuvant therapeutic agent in chemo-resistant EOC.

SELECTION OF CITATIONS
SEARCH DETAIL
...