Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Mol Med ; 25(22): 10747-10760, 2021 11.
Article in English | MEDLINE | ID: mdl-34708529

ABSTRACT

The interplay between mesenchymal stem/stromal cells (MSCs) and preservation conditions is critical to maintain the viability and functionality of these cells before administration. We observed that Ringer lactate (RL) maintained high viability of bone marrow-derived MSCs for up to 72 h at room temperature (18°C-22°C), whereas adipose-derived and umbilical cord-derived MSCs showed the highest viability for 72 h at a cold temperature (4°C-8°C). These cells maintained their adherence ability with an improved recovery rate and metabolic profiles (glycolysis and mitochondrial respiration) similar to those of freshly harvested cells. Growth factor and cytokine analyses revealed that the preserved cells released substantial amounts of leukaemia inhibitory factors (LIFs), hepatocyte growth factor (HGF) and vascular endothelial growth factor-A (VEGF-A), as well as multiple cytokines (eg IL-4, IL-6, IL-8, MPC-1 and TNF-α). Our data provide the simplest clinically relevant preservation conditions that maintain the viability, stemness and functionality of MSCs from perinatal and adult tissue sources.


Subject(s)
Cryopreservation , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Adipose Tissue/cytology , Biomarkers , Bone Marrow Cells/cytology , Cryopreservation/methods , Cytokines/metabolism , Energy Metabolism , Female , Humans , Male , Umbilical Cord/cytology
2.
Stem Cells Transl Med ; 10(9): 1266-1278, 2021 09.
Article in English | MEDLINE | ID: mdl-34080789

ABSTRACT

Human bone marrow-derived mesenchymal stem/stromal cells (BM-MSCs) represent promising stem cell therapy for the treatment of type 2 diabetes mellitus (T2DM), but the results of autologous BM-MSC administration in T2DM patients are contradictory. The purpose of this study was to test the hypothesis that autologous BM-MSC administration in T2DM patient is safe and that the efficacy of the treatment is dependant on the quality of the autologous BM-MSC population and administration routes. T2DM patients were enrolled, randomly assigned (1:1) by a computer-based system into the intravenous and dorsal pancreatic arterial groups. The safety was assessed in all the treated patients, and the efficacy was evaluated based on the absolute changes in the hemoglobin A1c, fasting blood glucose, and C-peptide levels throughout the 12-month follow-up. Our data indicated that autologous BM-MSC administration was well tolerated in 30 T2DM patients. Short-term therapeutic effects were observed in patients with T2DM duration of <10 years and a body mass index <23, which is in line with the phenotypic analysis of the autologous BM-MSC population. T2DM duration directly altered the proliferation rate of BM-MSCs, abrogated the glycolysis and mitochondria respiration of BM-MSCs, and induced the accumulation of mitochondria DNA mutation. Our data suggest that autologous administration of BM-MSCs in the treatment of T2DM should be performed in patients with T2DM duration <10 years and no obesity. Prior to further confirming the effects of T2DM on BM-MSC biology, future work with a larger cohort focusing on patients with different T2DM history is needed to understand the mechanism underlying our observation.


Subject(s)
Diabetes Mellitus, Type 2 , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Bone Marrow , Bone Marrow Cells , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/therapy , Humans , Mesenchymal Stem Cell Transplantation/adverse effects , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Obesity/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...