Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Article in English | MEDLINE | ID: mdl-33790006

ABSTRACT

The shape diversity and controlled reconfigurability of closed surfaces and filamentous structures, universally found in cellular colonies and living tissues, are challenging to reproduce. Here, we demonstrate a method for the self-shaping of liquid crystal (LC) droplets into anisotropic and three-dimensional superstructures, such as LC fibers, LC helices, and differently shaped LC vesicles. The method is based on two surfactants: one dissolved in the LC dispersed phase and the other in the aqueous continuous phase. We use thermal stimuli to tune the bulk LC elasticity and interfacial energy, thereby transforming an emulsion of polydispersed, spherical nematic droplets into numerous, uniform-diameter fibers with multiple branches and vice versa. Furthermore, when the nematic LC is cooled to the smectic-A LC phase, we produce monodispersed microdroplets with a tunable diameter dictated by the cooling rate. Utilizing this temperature-controlled self-shaping of LCs, we demonstrate life-like smectic LC vesicle structures analogous to the biomembranes in living systems. Our experimental findings are supported by a theoretical model of equilibrium interface shapes. The shape transformation is induced by negative interfacial energy, which promotes a spontaneous increase of the interfacial area at a fixed LC volume. The method was successfully applied to many different LC materials and phases, demonstrating a universal mechanism for shape transformation in complex fluids.

2.
Macromol Rapid Commun ; 41(10): e1900631, 2020 May.
Article in English | MEDLINE | ID: mdl-32129910

ABSTRACT

This study demonstrates that the bulk alignment of chromonic aggregates can be achieved during the swelling of hydrogels. Swelling of an ionic hydrogel immersed in an aqueous solution of disodium cromoglycate reorients the chromonic aggregates, and millimeter-thick optically anisotropic hydrogels are obtained. These anisotropic hydrogels contain the chromonic aggregates at a condensed concentration as high as in the columnar phase of a normal chromonic aqueous solution, although the X-ray diffraction results show much less stacking order and orientational order of the aggregates. Furthermore, anisotropic mechanical properties of the hydrogels are observed due to the anisotropic alignment of the chromonic aggregates.


Subject(s)
Hydrogels/chemistry , Liquid Crystals/chemistry , Anisotropy , Cromolyn Sodium/chemistry , Solutions , Water
3.
Soft Matter ; 14(9): 1511-1516, 2018 Feb 28.
Article in English | MEDLINE | ID: mdl-29442119

ABSTRACT

We investigated the pitches of cholesteric liquid crystals prepared by mixing disodium cromoglycate (DSCG) in water with 5 different water-soluble chiral additives. The measurements are based on the Grandjean-Cano wedge cell method. Overall, the twisting effect is weak, and the shortest pitch of 2.9 ± 0.2 µm is obtained using trans-4-hydroxy-l-proline, by which the cholesteric sample is iridescent at certain viewing angles. Freeze-fracture transmission electron microscopy (FFTEM) was also performed for the first time on both the nematic and cholesteric phases, revealing that stacked chromonic aggregates are very long, up to a few hundred nm, which explains why cholesteric chromonic liquid crystals hardly have pitches in the visible wavelength region.

4.
Adv Mater ; 29(37)2017 Oct.
Article in English | MEDLINE | ID: mdl-28758707

ABSTRACT

Self-organized nano- and microstructures of soft materials are attracting considerable attention because most of them are stimuli-responsive due to their soft nature. In this regard, topological defects in liquid crystals (LCs) are promising not only for self-assembling colloids and molecules but also for electro-optical applications such as optical vortex generation. However, there are currently few bottom-up methods for patterning a large number of defects periodically over a large area. It would be highly desirable to develop more effective techniques for high-throughput and low-cost fabrication. Here, a micropixelated LC structure consisting of a square array of topological defects is stabilized by photopolymerization. A polymer network is formed on the structure of a self-organized template of a nematic liquid crystal (NLC), and this in turn imprints other nonpolymerizable NLC molecules, which maintains their responses to electric field and temperature. Photocuring of specific local regions is used to create a designable template for the reproducible self-organization of defects. Moreover, a highly diluted polymer network (≈0.1 wt% monomer) exhibits instant on-off switching of the patterns. Beyond the mere stabilization of patterns, these results demonstrate that the incorporation of self-organized NLC patterns offers some unique and unconventional applications for anisotropic polymer networks.

5.
Adv Mater ; 29(25)2017 Jul.
Article in English | MEDLINE | ID: mdl-27966798

ABSTRACT

Chiral mesophases in achiral bent-shaped molecules have attracted particular attention since their discovery in the middle 1990s, not only because of their homochirality and polarity, but also due to their unique physical/physicochemical properties. Here, the most intriguing results in the studies of such symmetry-broken states, mainly helical-nanofilament (HNF) and dark-conglomerate (DC) phases, are reviewed. Firstly, basic information on the typical appearance and optical activity in these phases is introduced. In the following section, the formation of mesoscopic chiral superstructures in the HNF and DC phases is discussed in terms of hierarchical chirality. Nanoscale phase segregation in mixture systems and gelation ability in the HNF phase are also described. In addition, some other related chiral phases of bent-shaped molecules are shown. Recent attempts to control such mesoscopic chiral structure and the alignment/confinement of HNFs are also discussed, along with several examples of their fascinating advanced physical properties, i.e. huge enhancement of circular dichroism, electro- and photo-tunable optical activities, chirality-induced nonlinear optics (second-harmonic-generation circular difference and electrogyration effect), enhanced hydrophobicity through the dual-scale surface morphological modulation, and photoconductivity in the HNF/fullerene binary system. Future prospects from basic science and application viewpoints are also indicated in the concluding section.

6.
Nat Commun ; 7: 13238, 2016 11 07.
Article in English | MEDLINE | ID: mdl-27819290

ABSTRACT

Topological defects in nematic liquid crystals are ubiquitous. The defects are important in understanding the fundamental properties of the systems, as well as in practical applications, such as colloidal self-assembly, optical vortex generation and templates for molecular self-assembly. Usually, spatially and temporally stable defects require geometrical frustration imposed by surfaces; otherwise, the system relaxes because of the high cost of the elastic energy. So far, multiple defects are kept in bulk nematic liquid crystals by top-down lithographic techniques. In this work, we stabilize a large number of umbilical defects by doping with an ionic impurity. This method does not require pre-patterned surfaces. We demonstrate that molecular reorientation controlled by an AC voltage induces periodic density modulation of ions accumulated at an electrically insulating polymer interface, resulting in self-organization of a two-dimensional square array of umbilical defects that is reconfigurable and tunable.

7.
Chemphyschem ; 17(10): 1425-9, 2016 05 18.
Article in English | MEDLINE | ID: mdl-26910727

ABSTRACT

We investigated the electro-optic response in the "foggy" amorphous blue phase (BPIII) as well as in the isotropic phase. To the best of our knowledge, such a study has not yet been performed due to the very limited thermal range of BPIII. In this study, we used a single-component chiral bent-core liquid crystal with a self-stabilized BPIII, which is stable over a wide temperature range. The results show that the response time is on the order of hundreds of microseconds in the isotropic phase and increases to 1-2 ms in the BPIII (at TI-BP -T <1), then drastically increases up to a few tens of milliseconds upon further cooling in BPIII. Such an unusual behavior was explained on the basis of the high rotational viscosity and/or the existence of nanoscale smectic (Sm) clusters. The Kerr constant was also measured and found to be ∼500 pm V(-2) , which is the largest among bent-core BP systems reported so far and comparable with that of polymer-stabilized BPs.

8.
ACS Appl Mater Interfaces ; 8(8): 5580-5, 2016 Mar 02.
Article in English | MEDLINE | ID: mdl-26872271

ABSTRACT

A novel photodetachable adhesive was prepared using a photodepolymerizable cross-linked poly(olefin sulfone). A mixture of a cross-linkable poly(olefin sulfone), a cross-linking reagent, and a photobase generator functioned as a thermosetting adhesive and exhibited high adhesive strength on quartz plates comparable to that obtained for commercially available epoxy adhesives. The cured resin was stable in the absence of UV light irradiation but completely lost its adhesive strength upon exposure of glued quartz plates to UV light in conjunction with heating to 100 °C.

9.
Article in English | MEDLINE | ID: mdl-25375514

ABSTRACT

Elastic constants in liquid crystals are known to be in the range of pico- and several-tens piconewton (pN). We report herein that a bend elastic constant, K33, remarkably varies depending on a slight modification of the chemical structure in an analogous series of calamitic liquid crystals. In contrast to the record-high bend elastic constants (hundreds pN or sub-nN) reported previously in a compound with an azo linkage, analogous compounds with tolan and ester linkages show several-tens pN and pN, respectively. X-ray diffraction studies of these compounds reveal that smectic-like layer structures (cybotacticclusters) are formed in the nematic phase of only the homologous compounds with an azo linkage, certifying the idea that the existence of cybotactic clusters strongly enhances K33. Two theoretical considerations were made: (1) Based on molecular conformation calculation, flat molecules that have high torsional potential energy, such as the one with an azo linkage, easily pack to form cybotactic clusters. (2) Theoretical estimation was made of how much cluster volume ratio is necessary to give about 100-times-larger K33s.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(1 Pt 1): 010701, 2012 Jul.
Article in English | MEDLINE | ID: mdl-23005358

ABSTRACT

We report an anchoring transition of a liquid crystal under the influence of an electric field (E field) in the vicinity of a first-order anchoring transition (ATr) temperature showing bistable homeotropic (H) and planar (P) states. By means of polarizing microscopy combined with retardation and switching and dielectric measurements, three important observations were made: (1) The anchoring transition from H to P driven by an E field is first order with a threshold E-field strength, which decreases with increasing temperature; (2) the thickness of the H layer that is to be converted to the P orientation increases toward ATr temperature T(ATr); and (3) the temperature dependence of both parameters is well described by a power law.


Subject(s)
Liquid Crystals/chemistry , Liquid Crystals/radiation effects , Models, Chemical , Computer Simulation , Electromagnetic Fields , Phase Transition/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...