Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(51): 59358-59369, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38103256

ABSTRACT

Hydrogen fuel cells based on proton exchange membrane fuel cell (PEMFC) technology are promising as a source of clean energy to power a decarbonized future. However, PEMFCs are limited by a number of major inefficiencies; one of the most significant is hydrogen crossover. In this work, we comprehensively study the effects of two-dimensional (2D) materials applied to the anode side of the membrane as H2 barrier coatings on Nafion to reduce crossover effects on hydrogen fuel cells, while studying adverse effects on conductivity and catalyst performance in the beginning of life testing. The barrier layers studied include graphene, hexagonal boron nitride (hBN), amorphous boron nitride (aBN), and varying thicknesses of molybdenum disulfide (MoS2), all chosen due to their expected stability in a fuel cell environment. Crossover mitigation in the materials studied ranges from 4.4% (1 nm MoS2) to 46.1% (graphene) as compared to Nafion 211. Effects on proton conductivity are also studied, suggesting high areal proton transport in materials previously thought to be effectively nonconductive, such as 2 nm MoS2 and amorphous boron nitride under the conditions studied. The results indicate that a number of 2D materials are able to improve crossover effects, with those coated with 8 nm MoS2 and 1 L graphene able to achieve greater crossover reduction while minimizing conductivity penalty.

2.
Biomed Res Int ; 2019: 8581379, 2019.
Article in English | MEDLINE | ID: mdl-31467915

ABSTRACT

Background. Clonorchis sinensis/Opisthorchis viverrini and minute intestinal flukes (MIF) such as Haplorchis pumilio and H. taichui are fish-borne trematodes (FBT) that may coexist in regions where local people have a habit of eating raw fish like Vietnam. Responses to FBT should be verified according to the data on the distribution of these flukes. This study aims to explore the prevalence of different species of FBT and related factors among local people in a northern province of Vietnam. Methods. A cross-sectional study was conducted in Kim Son and Yen Khanh districts, Ninh Binh province, between March 2016 and March 2017. Four hundred people aged 15 years or older were interviewed and gave stool samples. The FBT eggs in faecal samples were enumerated by modified formalin-ether technique and identified by sequencing of the second internal transcribed spacer (ITS2) region. Result. Among the 400 persons, 19.5% were infected with FBT. On univariate analysis, eating raw fish was the main risk factor (odds ratios (OR)) of 6.769 (95% confidence interval (CI) of 2.655-17.259) followed by being of male gender (3.994 (CI95% 2.117-7.536)) and drinking alcohol (2.680 (CI95% 1.440-4.986)), respectively. There was no risk of increased infection among those living at home without hygienic latrines, those living close to rivers or having ponds, or those raising cats or dogs. By multivariate analysis, FBT infection was only related to the consumption of raw fish and gender. Seventy stool samples with a sufficient amount of faecal matter were subjected to DNA extraction, 42.85% of them yielded DNA production, and all were of Clonorchis sinensis. Conclusion. Results of the study showed the high prevalence of infection of fish-borne trematode, mostly C. sinensis among humans in Ninh Binh province. The prevention of FBT should be strengthened with programs detailed according to the distribution of FBT in different endemic areas.


Subject(s)
Fishes/parasitology , Raw Foods/parasitology , Trematode Infections/epidemiology , Trematode Infections/parasitology , Adolescent , Adult , Aged , Animals , Feces/parasitology , Female , Humans , Male , Middle Aged , Risk Factors , Species Specificity , Trematoda/pathogenicity , Trematode Infections/transmission , Vietnam/epidemiology , Young Adult
3.
Anal Bioanal Chem ; 383(2): 235-46, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16132136

ABSTRACT

To obtain quantitative information on human metabolism of selenium, we have performed selenium speciation analysis by HPLC/ICPMS on samples of human urine from one volunteer over a 48-hour period after ingestion of selenium (1.0 mg) as sodium selenite, L-selenomethionine, or DL-selenomethionine. The three separate experiments were performed in duplicate. Normal background urine from the volunteer contained total selenium concentrations of 8-30 microg Se/L (n=22) but, depending on the chromatographic conditions, only about 30-70% could be quantified by HPLC/ICPMS. The major species in background urine were two selenosugars, namely methyl-2-acetamido-2-deoxy-1-seleno-beta-D-galactopyranoside (selenosugar 1) and its deacylated analog methyl-2-amino-2-deoxy-1-seleno-beta-D-galactopyranoside (selenosugar 3). Selenium was rapidly excreted after ingestion of the selenium compounds: the peak concentrations (approximately 250-400 microg Se/L, normalized concentrations) were recorded within 5-9 hours, and concentrations had returned to close to background levels within 48 hours, by which time 25-40% of the ingested selenium, depending on the species ingested, had been accounted for in the urine. In all experiments, the major metabolite was selenosugar 1, constituting either approximately 80% of the total selenium excreted over the first 24 hours after ingestion of selenite or L-selenomethionine or approximately 65% after ingestion of DL-selenomethionine. Selenite was not present at significant levels (<1 microg Se/L) in any of the samples; selenomethionine was present in only trace amounts (approximately 1 microg/L, equivalent to less than 0.5% of the total Se) following ingestion of L-selenomethionine, but it constituted about 20% of the excreted selenium (first 24 hours) after ingestion of DL-selenomethionine, presumably because the D form was not efficiently metabolized. Trimethylselenonium ion, a commonly reported urine metabolite, could not be detected (<1 microg/L) in the urine samples after ingestion of selenite or selenomethionine. Cytotoxicity studies on selenosugar 1 and its glucosamine isomer (selenosugar 2, methyl-2-acetamido-2-deoxy-1-seleno-beta-D-glucosopyranoside) were performed with HepG2 cells derived from human hepatocarcinoma, and these showed that both compounds had low toxicity (about 1000-fold less toxic than sodium selenite). The results support earlier studies showing that selenosugar 1 is the major urinary metabolite after increased selenium intake, and they suggest that previously accepted pathways for human metabolism of selenium involving trimethylselenonium ion as the excretionary end product may need to be re-evaluated.


Subject(s)
Selenium/urine , Selenomethionine/urine , Sodium Selenite/urine , Cell Line, Tumor , Galactosamine/urine , Gas Chromatography-Mass Spectrometry , Glucosamine/urine , Humans , Organoselenium Compounds/urine , Selenium Compounds/urine , Selenomethionine/metabolism , Sodium Selenite/metabolism , Stereoisomerism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...