Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Sci ; 8(14): 3819-3829, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32543628

ABSTRACT

We describe a screening approach to identify customized substrates for serum-free human mesenchymal stromal cell (hMSC) culture. In particular, we combine a biomaterials screening approach with design of experiments (DOE) and multivariate analysis (MVA) to understand the effects of substrate stiffness, substrate adhesivity, and media composition on hMSC behavior in vitro. This approach enabled identification of poly(ethylene glycol)-based and integrin binding hydrogel substrate compositions that supported functional hMSC expansion in multiple serum-containing and serum-free media, as well as the expansion of MSCs from multiple, distinct sources. The identified substrates were compatible with standard thaw, seed, and harvest protocols. Finally, we used MVA on the screening data to reveal the importance of serum and substrate stiffness on hMSC expansion, highlighting the need for customized cell culture substrates in optimal hMSC biomanufacturing processes.


Subject(s)
Mesenchymal Stem Cells , Cell Culture Techniques , Cell Differentiation , Cell Proliferation , Culture Media , Humans , Hydrogels
2.
Article in English | MEDLINE | ID: mdl-29104816

ABSTRACT

The physiological relevance of Matrigel as a cell-culture substrate and in angiogenesis assays is often called into question. Here, we describe an array-based method for the identification of synthetic hydrogels that promote the formation of robust in vitro vascular networks for the detection of putative vascular disruptors, and that support human embryonic stem cell expansion and pluripotency. We identified hydrogel substrates that promoted endothelial-network formation by primary human umbilical vein endothelial cells and by endothelial cells derived from human induced pluripotent stem cells, and used the hydrogels with endothelial networks to identify angiogenesis inhibitors. The synthetic hydrogels show superior sensitivity and reproducibility over Matrigel when evaluating known inhibitors, as well as in a blinded screen of a subset of 38 chemicals, selected according to predicted vascular disruption potential, from the Toxicity ForeCaster library of the US Environmental Protection Agency. The identified synthetic hydrogels should be suitable alternatives to Matrigel for common cell-culture applications.

3.
Acta Biomater ; 34: 93-103, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26386315

ABSTRACT

Here, we have developed a novel method for forming hydrogel arrays using surfaces patterned with differential wettability. Our method for benchtop array formation is suitable for enhanced-throughput, combinatorial screening of biochemical and biophysical cues from chemically defined cell culture substrates. We demonstrated the ability to generate these arrays without the need for liquid handling systems and screened the combinatorial effects of substrate stiffness and immobilized cell adhesion peptide concentration on human mesenchymal stem cell (hMSC) behavior during short-term 2-dimensional cell culture. Regardless of substrate stiffness, hMSC initial cell attachment, spreading, and proliferation were linearly correlated with immobilized CRGDS peptide concentration. Increasing substrate stiffness also resulted in increased hMSC initial cell attachment, spreading, and proliferation; however, examination of the combinatorial effects of CRGDS peptide concentration and substrate stiffness revealed potential interplay between these distinct substrate signals. Maximal hMSC proliferation seen on substrates with either high stiffness or high CRGDS peptide concentration suggests that some baseline level of cytoskeletal tension was required for hMSC proliferation on hydrogel substrates and that multiple substrate signals could be engineered to work in synergy to promote mechanosensing and regulate cell behavior. STATEMENT OF SIGNIFICANCE: Our novel array formation method using surfaces patterned with differential wettability offers the advantages of benchtop array formation for 2-dimensional cell cultures and enhanced-throughput screening without the need for liquid handling systems. Hydrogel arrays formed via our method are suitable for screening the influence of chemical (e.g. cell adhesive ligands) and physical (stiffness, size, shape, and thickness) substrate properties on stem cell behavior. The arrays are also fully compatible with commercially available micro-array add-on systems, which allows for simultaneous control of the insoluble and soluble cell culture environment. This study used hydrogel arrays to demonstrate that synergy between cell adhesion and mechanosensing can be used to regulate hMSC behavior.


Subject(s)
Combinatorial Chemistry Techniques/methods , Hydrogel, Polyethylene Glycol Dimethacrylate/pharmacology , Mesenchymal Stem Cells/cytology , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Cells, Immobilized/cytology , Cells, Immobilized/drug effects , Humans , Ligands , Mesenchymal Stem Cells/drug effects , Peptides/pharmacology , Receptors, Cell Surface/metabolism , Wettability
SELECTION OF CITATIONS
SEARCH DETAIL
...