Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 15(14): 3962-3967, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38569092

ABSTRACT

Copper single-site catalysts supported on Zr-based metal-organic frameworks (MOFs) are well-known systems in which the nature of the active sites has been deeply investigated. Conversely, the redox chemistry of the Ce-counterparts is more limited, because of the often-unclear Cu2+/Cu+ and Ce4+/Ce3+ pairs behavior. Herein, we studied a novel Cu2+ single-site catalyst supported on a defective Ce-MOF, Cu/UiO-67(Ce), as a catalyst for the CO oxidation reaction. Based on a combination of in situ DRIFT and operando XAS spectroscopies, we established that Cu+ sites generated during catalysis play a pivotal role. Moreover, the oxygen vacancies associated with Ce3+ sites and presented in the defective Cu/UiO-67(Ce) material are able to activate the O2 molecules, closing the catalytic cycle. The results presented in this work open a new route for the design of active and stable single-site catalysts supported on defective Ce-MOFs.

2.
J Phys Chem C Nanomater Interfaces ; 128(3): 1049-1057, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38293690

ABSTRACT

Zr-based metal-organic frameworks (MOFs) are excellent heterogeneous porous catalysts due to their thermal stability. Their tunability via node and linker modifications makes them amenable for theoretical studies on catalyst design. However, detailed benchmarks on MOF-based reaction mechanisms combined with kinetics analysis are still scarce. Thus, we here evaluate different computational models and density functional theory (DFT) methods followed by kinetic Monte Carlo studies for a case reaction relevant in biomass upgrading, i.e., the conversion of methyl levulinate to γ-valerolactone catalyzed by UiO-66. We show the impact of cluster versus periodic models, the importance of the DF of choice, and the direct comparison to experimental data via simulated kinetics data. Overall, we found that Perdew-Burke-Ernzerhof (PBE), a widely employed method in plane-wave periodic calculations, greatly overestimates reaction rates, while M06 with cluster models better fits the available experimental data and is recommended whenever possible.

SELECTION OF CITATIONS
SEARCH DETAIL
...